Look's Complex

Algebra Level 2

Find

( 1 + i ) 2011 ( 1 i ) 2009 . \dfrac{(1 + i)^{2011}}{(1 - i)^{2009}}.

Notation: i = 1 i = \sqrt{-1} denotes the imaginary unit .


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Sep 20, 2018

( 1 + i ) 2011 ( 1 i ) 2009 = ( 1 + i ) 2 × 1005 + 1 ( 1 i ) 2 × 1004 + 1 Note that ( 1 ± i ) 2 = ± 2 i = ( 2 i ) 1005 ( 1 + i ) ( 2 i ) 1004 ( 1 i ) = 2 1005 i 4 × 251 + 1 ( 1 + i ) ( 2 ) 1004 i 4 × 251 ( 1 i ) and i 2 = 1 i 4 = 1 = 2 i ( 1 + i ) 1 i = 2 ( i 1 ) 1 i = 2 \begin{aligned} \frac {(1+i)^{2011}}{(1-i)^{2009}} & = \frac {(1+i)^{2\times 1005+1}}{(1-i)^{2\times 1004+1}} & \small \color{#3D99F6} \text{Note that }(1\pm i)^2 = \pm 2i \\ & = \frac {(2i)^{1005}(1+i)}{(-2i)^{1004}(1-i)} \\ & = \frac {2^{1005}i^{4\times 251+1}(1+i)}{(-2)^{1004}i^{4\times 251}(1-i)} & \small \color{#3D99F6} \text{and }i^2 = -1 \implies i^4 = 1 \\ & = \frac {2i(1+i)}{1-i} \\ & = \frac {2(i-1)}{1-i} \\ & = \boxed{-2} \end{aligned}

Or using Euler's formula : e i x = cos x + i sin x e^{ix} = \cos x + i \sin x .

( 1 + i ) 2011 ( 1 i ) 2009 = ( 2 ( 1 2 + i 2 ) ) 2011 ( 2 ( 1 2 i 2 ) ) 2009 = ( 2 ( cos π 4 + i sin π 4 ) ) 2011 ( 2 ( cos π 4 i sin π 4 ) ) 2009 = ( 2 e π 4 i ) 2011 ( 2 e π 4 i ) 2009 = ( 2 ) 2011 2009 e 2011 + 2009 4 π i = ( 2 ) 2 e 1005 π i Note that e π i = 1 = 2 ( 1 ) 1005 = 2 \begin{aligned} \frac {(1+i)^{2011}}{(1-i)^{2009}} & = \frac {\left(\sqrt 2\left(\frac 1{\sqrt 2}+\frac i{\sqrt 2}\right)\right)^{2011}}{\left(\sqrt 2\left(\frac 1{\sqrt 2}-\frac i{\sqrt 2}\right)\right)^{2009}} \\ & = \frac {\left(\sqrt 2\left(\cos \frac \pi 4+i\sin \frac \pi 4\right)\right)^{2011}}{\left(\sqrt 2\left(\cos \frac \pi 4-i\sin \frac \pi 4\right)\right)^{2009}} \\ & = \frac {\left(\sqrt 2e^{\frac \pi 4i}\right)^{2011}}{\left(\sqrt 2e^{-\frac \pi 4i}\right)^{2009}} \\ & = \left(\sqrt 2\right)^{2011-2009} e^{\frac {2011+2009}4 \pi i} \\ & = \left(\sqrt 2\right)^2 e^{1005 \pi i} & \small \color{#3D99F6} \text{Note that }e^{\pi i} = -1 \\ & = 2 (-1)^{1005} \\ & = \boxed{-2} \end{aligned}

Luke Smith
Jul 25, 2020

Same solution as mine

Dibyojyoti Bhattacharjee - 2 months, 2 weeks ago
Mehdi K.
Aug 18, 2019

( 1 + i ) 2011 × i 2009 ( 1 i ) 2009 × i 2009 = ( 1 + i ) 2011 × i 2009 ( ( 1 i ) × i ) 2009 = ( 1 + i ) 2011 × i 2009 ( i + 1 ) 2009 \newcommand{\iu}{{i\mkern1mu}} \frac{(1+i)^{2011} \times i^{2009}}{(1-i)^{2009} \times i^{2009}} = \frac{(1+i)^{2011} \times i^{2009}}{((1-i) \times i)^{2009}} = \frac{(1+i)^{2011} \times i^{2009}}{(i+1)^{2009}} = ( 1 + i ) 2 × ( ( i 2 ) 2 ) 502 × i = ( 1 + 2 i + i 2 ) × i = 2 (1+i)^2 \times ((i^2)^2)^{502} \times i = (1 + 2i + i^2) \times i=-2 (since i 2 = 1 i^2 = -1 )

Ethan N
Oct 5, 2019

There's no comment section, so I'm forced to post a comment here. It is not a valid explanation but a question. I believe I've solved the problem illegitimately and I'd like to know whether I'm right to be suspicious, and also why it worked.

I started working on the problem right after reading the wiki section about powers of i, so I tried to apply what I had just read.

To simplify larger powers of i, take the last two digits of the number and divide it by 4. Find the remainder and if the remainder is k, then the value is i k i^{k}

Then I commited something horrible: I ignored the fact that the problem has (1+i) and (1-i) instead of i's only and simplified it like so: ( 1 + i ) 2011 ( 1 i ) 2009 = ( 1 + i ) 3 ( 1 i ) 1 = ( 1 + i ) 2 ( 1 + i ) 1 i = 2 i ( 1 + i ) 1 i = 2 i + 2 i 2 1 i = 2 + 2 i 1 i = 2 ( 1 i ) 1 i = 2 \frac{(1+i)^{2011}}{(1-i)^{2009}}=\frac{(1+i)^{3}}{(1-i)^{1}}=\frac{(1+i)^{2}(1+i)}{1-i}=\frac{2i(1+i)}{1-i}=\frac{2i+2i^{2}}{1-i}=\frac{-2+2i}{1-i}=\frac{-2(1-i)}{1-i}=-2

I think I shouldn't have simplified the exponents, because I wasn't working with pure i's, but I'm surprised that it worked anyway. Why?

What's the problem with having a non-pure i's?

Mahmoud Radwan - 1 year, 3 months ago
Sumant Chopde
Apr 16, 2019

I first found out the logarithm of the given expression to the base e e and then raised e e to the power of the result.

log ( i + 1 ) 2011 ( 1 i ) 2009 = 2011 log ( 1 + i ) 2009 log ( 1 i ) \log \frac{(i+1)^{2011}}{(1-i)^{2009}} \\ = 2011 \log (1+i) - 2009 \log (1-i) \\ Now, using The principal value of log z = log z + i a r g ( z ) , \text{The principal value of } \log z = \log |z| + i arg(z), where arg(z) is the principal argument of z (which is also known as its amplitude), we get,

log ( 1 + i ) = log 2 + i ( π 4 ) \log (1+i) = \log \sqrt 2 + i(\frac{\pi}{4}) and l o g ( 1 i ) = log 2 i ( π 4 ) . \\ log (1-i) = \log \sqrt 2 - i(\frac{\pi}{4}).

Substituting these values in the first equation, we get

log ( 1 + i ) 2011 ( 1 i ) 2009 = 2011 ( log 2 + i π 4 ) 2009 ( log 2 i π 4 ) = 2 log 2 + 4020 i π 4 = log 2 + 1005 i π \log \frac{(1+i)^{2011}}{(1-i)^{2009}} \\ = 2011(\log \sqrt 2 + i \frac {\pi}{4}) - 2009(\log \sqrt 2 - i \frac{\pi}{4}) \\ = 2 \log \sqrt 2 + 4020 i \frac{\pi}{4} \\ = \log 2 + 1005 i \pi

To get the value of original expression, we raise e e to the power of log 2 + 1005 i π \log 2 + 1005 i \pi .

e log 2 + 1005 i π = e log 2 × e 1005 i π = 2 [ cos ( 1005 π ) + i sin ( 1005 π ] Using Euler’s Identity = 2 [ 1 + i ( 0 ) ] = 2 \therefore e^{\log 2 + 1005 i \pi} \\ = e^{\log 2} \times e^{1005 i \pi} \\ = 2[\cos(1005\pi) + i\sin(1005\pi] \ldots \textcolor{#3D99F6}{\text{Using Euler's Identity}} \\ = 2[-1 + i (0)] \\ = \boxed{-2} Feel free to comment on this solution and I apologise for any mistakes in LaTex as I am new to it.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...