Complex Numbers

Algebra Level 5

Let a , b , c a,b,c be complex numbers satisfying

{ ( a + 1 ) ( b + 1 ) ( c + 1 ) = 1 ( a + 2 ) ( b + 2 ) ( c + 2 ) = 2 ( a + 3 ) ( b + 3 ) ( c + 3 ) = 3 \begin{cases} (a+1)(b+1)(c+1) = 1\\ (a+2)(b+2)(c+2) = 2\\ (a+3)(b+3)(c+3) = 3\end{cases}

Find ( a + 4 ) ( b + 4 ) ( c + 4 ) (a+4)(b+4)(c+4) .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Feb 2, 2015

lets think of it as a cubic polynomial G ( x ) = ( x + a ) ( x + b ) ( x + c ) G(x)=(x+a)(x+b)(x+c) now, let F ( x ) = G ( x ) x = ( x + a ) ( x + b ) ( x + c ) x F(x)=G(x)-x=(x+a)(x+b)(x+c)-x we see that F ( 1 ) = F ( 2 ) = F ( 3 ) = 0 F(1)=F(2)=F(3)=0 since 1,2,3 are roots of F(x), it can be written as F ( x ) = ( x 1 ) ( x 2 ) ( x 3 ) F(x)=(x-1)(x-2)(x-3) lets compute F ( 4 ) = ( 4 1 ) ( 4 2 ) ( 4 3 ) = 3 × 2 × 1 = 6 F(4)=(4-1)(4-2)(4-3)=3\times 2\times 1=6 lets solve for G(4) G ( 4 ) 4 = F ( 4 ) G ( 4 ) = 6 + 4 G(4)-4=F(4)\longrightarrow G(4)=6+4 G ( 4 ) = 10 G(4)=10 and hence ( a + 4 ) ( b + 4 ) ( c + 4 ) = 10 (a+4)(b+4)(c+4)=\boxed{10}

F(x)=k(x-1)(x-2)(x-3) where abc=-6k Also abc= -6k^(3) Thus we get k=0,1,-1 How did you take k=1

Rohan Jasani - 3 years, 5 months ago
Karan Ahire
Jan 29, 2015

Firstly, let's expand all of the equations.

abc+ab+ac+bc+a+b+c+1=1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ (I)

abc+2ab+2ac+2bc+4a+4b+4c+8=2 _ _ _ _ _ _ _ _ _ _ _ _ (II)

abc+3ab+3ac+3bc+9a+9b+9c+27=3 _ _ _ _ _ _ _ _ _ _ _ __ (III)

Subtracting (I) from (II) and (II) from (III), we get:

ab+ac+bc+3a+3b+3c+7=1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (IV)

ab+ac+bc+5a+5b+5c+19=1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (V)

Subtracting (IV) from (V):

2a+2b+2c+12=0

a+b+c=−6 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (VI)

Substituting (VI) in (IV), we get:

ab+ac+bc+3∗−6+7=1

ab+ac+bc−18+7=1

ab+ac+bc=12 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ (VII)

Substituting (VI) and (VII) in (I):

abc+12−6+1=1

abc=−6 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ (VIII)

Now we have all of the information we need:

(a+4)(b+4)(c+4)=abc+4(ab+ac+bc)+16(a+b+c)+64

=−6+4∗12+16∗−6+64=−6+48−96+64=112−102=10.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...