Let a , b , c be complex numbers satisfying
⎩ ⎪ ⎨ ⎪ ⎧ ( a + 1 ) ( b + 1 ) ( c + 1 ) = 1 ( a + 2 ) ( b + 2 ) ( c + 2 ) = 2 ( a + 3 ) ( b + 3 ) ( c + 3 ) = 3
Find ( a + 4 ) ( b + 4 ) ( c + 4 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
F(x)=k(x-1)(x-2)(x-3) where abc=-6k Also abc= -6k^(3) Thus we get k=0,1,-1 How did you take k=1
Firstly, let's expand all of the equations.
abc+ab+ac+bc+a+b+c+1=1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ (I)
abc+2ab+2ac+2bc+4a+4b+4c+8=2 _ _ _ _ _ _ _ _ _ _ _ _ (II)
abc+3ab+3ac+3bc+9a+9b+9c+27=3 _ _ _ _ _ _ _ _ _ _ _ __ (III)
Subtracting (I) from (II) and (II) from (III), we get:
ab+ac+bc+3a+3b+3c+7=1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (IV)
ab+ac+bc+5a+5b+5c+19=1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (V)
Subtracting (IV) from (V):
2a+2b+2c+12=0
a+b+c=−6 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (VI)
Substituting (VI) in (IV), we get:
ab+ac+bc+3∗−6+7=1
ab+ac+bc−18+7=1
ab+ac+bc=12 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ (VII)
Substituting (VI) and (VII) in (I):
abc+12−6+1=1
abc=−6 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ (VIII)
Now we have all of the information we need:
(a+4)(b+4)(c+4)=abc+4(ab+ac+bc)+16(a+b+c)+64
=−6+4∗12+16∗−6+64=−6+48−96+64=112−102=10.
Problem Loading...
Note Loading...
Set Loading...
lets think of it as a cubic polynomial G ( x ) = ( x + a ) ( x + b ) ( x + c ) now, let F ( x ) = G ( x ) − x = ( x + a ) ( x + b ) ( x + c ) − x we see that F ( 1 ) = F ( 2 ) = F ( 3 ) = 0 since 1,2,3 are roots of F(x), it can be written as F ( x ) = ( x − 1 ) ( x − 2 ) ( x − 3 ) lets compute F ( 4 ) = ( 4 − 1 ) ( 4 − 2 ) ( 4 − 3 ) = 3 × 2 × 1 = 6 lets solve for G(4) G ( 4 ) − 4 = F ( 4 ) ⟶ G ( 4 ) = 6 + 4 G ( 4 ) = 1 0 and hence ( a + 4 ) ( b + 4 ) ( c + 4 ) = 1 0