Complex numbers again

Algebra Level 4

If z z be a complex number satisfying z 2 + 2 ( z + z ) + 3 i ( z z ) + 4 = 0 { |z| }^{ 2 }+2(z+\overline { z } )+3i(z-\overline { z } )+4=0 , then complex number z + 3 + 2 i z+3+2i will lie on a circle with centre a + b i a+bi and radius c c units.

Find a + b + c |a+b+c| .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
May 23, 2015

z 2 + ( 2 + 3 i ) z + ( 2 3 i ) z + 4 = 0 { |z| }^{ 2 }+(2+3i)z+(2-3i)\overline { z }+4=0

t = 2 3 i t=2-3i , k = 4 k=4

centre of this circle is ( 2 3 i ) -(2-3i) , r a d i u s = t t k radius=\sqrt{t \overline { t }-k}

z + 2 3 i = 3 |z+2-3i|=3

let w = z + 3 + 2 i = 2 3 i + 1 + 5 i w=z+3+2i=2-3i+1+5i

w 1 5 i = z + 2 3 i = 3 |w-1-5i|=|z+2-3i|=3

so w w lies on circle whose centre is 1 + 5 i 1+5i and radius 3 3 units

Chew-Seong Cheong
May 23, 2015

Let z = x + y i z=x+yi , then:

z 2 + 2 ( z + z ) + 3 i ( z z ) + 4 = 0 x 2 + y 2 + 2 ( x + y i + x y i ) + 3 i ( x + y i x + y i ) + 4 = 0 x 2 + y 2 + 2 ( 2 x ) + 3 i ( 2 y i ) + 4 = 0 x 2 + y 2 + 4 x 6 y + 4 = 0 ( x + 2 ) 2 4 + ( y 3 ) 2 9 + 4 = 0 ( x + 2 ) 2 + ( y 3 ) 2 = 9 \begin{aligned} |z^2|+2(z+\overline{z})+3i(z-\overline{z})+4 =0 \\ x^2+y^2+2(x+yi+x-yi) + 3i(x+yi-x+yi) +4 = 0 \\ x^2+y^2+2(2x) + 3i(2yi) +4 = 0 \\ x^2+y^2+4x -6y +4 = 0 \\ (x+2)^2-4 +(y-3)^2-9+4=0 \\ (x+2)^2+(y-3)^2=9 \end{aligned}

Therefore, z z lies on the circle with center 2 + 3 i -2+3i and radius 3 3 . And z + 3 + 2 i z+3+2i has a center of ( 2 + 3 ) + ( 3 + 2 ) i = 1 + 5 i (-2+3)+(3+2)i = 1+5i and radius 3 3 .

a + b + c = 1 + 5 + 3 = 9 \Rightarrow |a+b+c| = 1+5+3 = \boxed{9}

Moderator note:

Converting into cartesian coordinates is one way to gain familiarity with the argand diagram.

Do you know how to describe a circle with center ω \omega and radius r r with a polar equation?

Thanks, for asking. Didn't about polar equation for a circle. Done some reading and it should be ρ = 2 a cos θ + 2 b sin θ \rho = 2a\cos{\theta} + 2b\sin{\theta} , where ω = a + b i \omega = a + bi .

Chew-Seong Cheong - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...