The equation : represents an ellipse having eccentricity :
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let z = x + y i be any complex number. Substituting this value into the above modulus equation yields:
∣ ( x − 1 ) + y i ∣ + ∣ ( x + 1 ) + y i ∣ = 4 ;
or ( x − 1 ) 2 + y 2 + ( x + 1 ) 2 + y 2 = 4 ;
or ( x − 1 ) 2 + 2 y 2 + ( x + 1 ) 2 + 2 ⋅ ( x − 1 ) 2 y 2 + ( x + 1 ) 2 y 2 + y 4 + ( x 2 − 1 ) 2 = 1 6 ;
or 2 x 2 + 2 y 2 + 2 + 2 ⋅ 2 x 2 y 2 − 2 x y 2 + 2 y 2 + 2 x y 2 + y 4 + x 4 − 2 x 2 + 1 = 1 6 ;
or ( x 2 + y 2 ) 2 − 2 ( x 2 − y 2 ) + 1 = 7 − x 2 − y 2 ;
or ( x 2 + y 2 ) 2 − 2 ( x 2 − y 2 ) + 1 = 4 9 − 1 4 ( x 2 + y 2 ) + ( x 2 + y 2 ) 2 ;
or 1 2 x 2 + 1 6 y 2 = 4 8 ;
or 4 x 2 + 3 y 2 = 1 .
Taking a = 2 , b = 3 the focal distance computes to c = a 2 − b 2 = 4 − 3 = 1 . The eccentricity is now computed to be e = a c = 2 1 .