Complex Numbers Are Not Really That Complex

Algebra Level 4

Find the minimum natural value of n n such that ( 2 i 1 + i ) n \left(\dfrac{2i}{1+i}\right)^n is a positive integer.


Can you solve this question without using Euler's Identity or De Moivres Theorem?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

( 2 i 1 + i ) n \displaystyle \large \left(\frac{2i}{1+i}\right)^n

= ( 1 + 2 i 1 1 + i ) n =\displaystyle \large \left(\frac{1+2i-1}{1+i}\right)^n

= ( 1 2 + 2 1 i + i 2 1 + i ) n =\displaystyle \large \left(\frac{1^2 + 2 \cdot 1 \cdot i + i^2 }{1+i}\right)^n

= ( ( 1 + i ) 2 1 + i ) n =\displaystyle \large \left(\frac{(1+i)^2}{1+i}\right)^n

= ( 1 + i ) n =\displaystyle \large \left(1+i\right)^n

= [ ( 1 + i ) 2 ] n 2 =\displaystyle \large \left[\left(1+i\right)^2\right]^{\frac{n}{2}}

= ( 2 i ) n 2 =\displaystyle \large \left(2i\right)^{\frac{n}{2}}

= 2 n 2 i n 2 =\displaystyle \large 2^{\frac{n}{2}}\cdot i^{\frac{n}{2}}

Clearly, for 2 n / 2 2^{n/2} to be a natural number, its minimum natural power must be 1 1 . Therefore n n has to be atleast an even number.

Secondly, the minimum power for i i to be positive is 4 4 . Therefore n m i n 2 = 4 n m i n = 8 \frac{n_{min}}{2}=4 \implies n_{min} = 8 , which is even and hence satisfies the previous condition.


Question Source: R. D. Sharma - Mathematics (Class XI) - Complex Numbers - MCQs - Pg. No. 13.64 - Q. No. 13

Chew-Seong Cheong
Jan 18, 2017

Relevant wiki: De Moivre's Theorem

f ( n ) = ( 2 i 1 + i ) n = ( 2 i ( 1 i ) ( 1 + i ) ( 1 i ) ) n = ( 2 i ( 1 i ) 2 ) n = ( i + 1 ) n = ( 2 ( 1 2 + i 2 ) ) n = ( 2 ( cos π 4 + i sin π 4 ) ) n By De Moivres theorem = 2 n 2 ( cos n π 4 + i sin n π 4 ) \begin{aligned} f(n) & = \left(\frac {2i}{1+i}\right)^n \\ & = \left(\frac {2i(1-i)}{(1+i)(1-i)}\right)^n \\ & = \left(\frac {2i(1-i)}{2} \right)^n \\ & = \left( i + 1 \right)^n \\ & = \left(\sqrt 2 \left(\frac 1{\sqrt 2} + \frac i{\sqrt 2} \right) \right)^n \\ & = \left(\sqrt 2 \left({\color{#3D99F6}\cos \frac \pi 4 + i \sin \frac \pi 4} \right) \right)^n & \small \color{#3D99F6} \text{By De Moivres theorem} \\ & = 2^\frac n2 \left({\color{#3D99F6} \cos \frac {n \pi}4 + i \sin \frac {n \pi}4} \right) \end{aligned}

We note that 2 n 2 2^\frac n2 is a natural number when n n is even and cos n π 4 + i sin n π 4 = 1 \cos \dfrac {n \pi}4 + i \sin \dfrac {n \pi}4 = 1 when n π 4 = 2 k π \dfrac {n\pi}4 = 2k \pi , where k N k \in \mathbb N , n = 8 k \implies n = 8k , therefore, the smallest n = 8 n= \boxed{8} .

Rab Gani
Jan 19, 2017

Use Euler formula: e^(ix) = cos x + i sin x, then〖(2i/(1+i))〗^n = 〖((2e^(i π/2))/(√2e^(i π/4) ))〗^n = 2^(n/2) e^(i*n π/4) . So the minimum value of n such that 〖(2i/(1+i))〗^n is a positive integer is : n=8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...