Complex or simple?

Level pending

I f z = e i θ t h e n f i n d n = 1 15 I m ( z 2 n 1 ) a t θ = 3 0 If\ z=e^{i\theta}\ then\ find\ \\ \sum_{n=1}^{15}Im(z^{2n-1})\\at\ \theta=30^{\circ} The question is not original.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Adarsh Kumar
Oct 24, 2014

z = e i θ z 2 n 1 = e i ( 2 n 1 ) θ t h e r e f o r e , I m ( z 2 n 1 ) = sin ( 2 n 1 ) θ n = 1 15 I m ( z 2 n 1 ) = sin θ + sin 3 θ + sin 5 θ + . . . . + sin 29 θ = S . T h e r e f o r e , S sin θ = sin 2 θ + sin 3 θ sin θ + sin 5 θ sin θ + . . . . . . sin 29 θ sin θ S 2 sin θ = ( 1 cos 2 θ ) + ( cos 2 θ cos 4 θ + . . . . . ( cos 28 θ cos 30 θ ) S 2 sin θ = 1 cos 30 θ . T h e r e f o r e , S = 1 cos 30 θ 2 sin θ S = 1 cos 90 0 2 sin 3 0 = 2 z=e^{i\theta}\Longrightarrow z^{2n-1}=e^{i*(2n-1)*\theta}\ therefore,\\ Im(z^{2n-1})=\sin(2n-1)*\theta\\\Longrightarrow \sum_{n=1}^{15}Im(z^{2n-1})=\sin\theta+\sin3\theta+\sin5\theta+....\\+\sin29\theta=S.\\Therefore,S*\sin\theta=\sin^{2}\theta+\sin3\theta*\sin\theta\\+\sin5\theta*\sin\theta+...... \sin29\theta*\sin\theta\\\Longrightarrow S*2\sin\theta=(1-\cos2\theta)+(\cos2\theta-\cos4\theta+\\.....(\cos28\theta-\cos30\theta)\Longrightarrow S*2\sin\theta=1-\cos30\theta.Therefore,S=\dfrac{1-\cos30\theta}{2\sin\theta}\\\Longrightarrow S=\dfrac{1-\cos900^{\circ}}{2\sin30^{\circ}}=2

Generalising

sin α + sin ( α + β ) + s i n ( α + 2 β ) + sin ( α + ( n 1 ) β ) = sin ( n β 2 ) sin ( β 2 ) ( sin ( α + ( n 1 ) β 2 ) \displaystyle \sin\alpha + \sin(\alpha + \beta) + sin(\alpha + 2\beta) + \ldots \sin(\alpha + (n-1)\beta) = \frac{\sin(\frac{n\beta}{2})}{\sin(\frac{\beta}{2})}(\sin(\alpha + (n -1)\frac{\beta}{2})

Krishna Sharma - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...