Complex Phobia 1

Geometry Level 5

If cos x + cos y + cos z = sin x + sin y + sin z = 0 \cos{x} + \cos{y }+ \cos{z} = \sin{x} + \sin{y} + \sin{z} = 0

Find sin ( x + y ) sin ( y + z ) sin ( x + z ) \sin(x+y)\sin(y+z)\sin(x+z) .

0 1 -1 None of these.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 27, 2016

Consider the complex third root of unity ω 3 = 1 \omega^3 = 1 , ω = e 2 π 3 i \implies \omega = e^{\frac {2\pi}3i} and we have:

1 + ω + ω 2 = 0 e 0 i + e 2 π 3 i + e 4 π 3 i = 0 By Euler’s formula e x i = cos x + i sin x e θ i ( e 0 i + e 2 π 3 i + e 4 π 3 i ) = 0 where θ is a real constant. cos θ + i sin θ + cos ( θ + 2 π 3 ) + i sin ( θ + 2 π 3 ) + cos ( θ + 4 π 3 ) + i sin ( θ + 4 π 3 ) = 0 cos θ + cos ( θ + 2 π 3 ) + cos ( θ + 4 π 3 ) + i ( sin θ + sin ( θ + 2 π 3 ) + sin ( θ + 4 π 3 ) ) = 0 \begin{aligned} 1 + \omega + \omega^2 & = 0 \\ e^{0i} + e^{\frac {2\pi}3i} + e^{\frac {4\pi}3i} & = 0 &\small \color{#3D99F6} \text{By Euler's formula } e^{xi} = \cos x + i \sin x \\ \implies e^{{\color{#3D99F6}\theta}i} \left(e^{0i} + e^{\frac {2\pi}3i} + e^{\frac {4\pi}3i}\right) & = 0 &\small \color{#3D99F6} \text{where }\theta \text{ is a real constant.} \\ \cos \theta + i \sin \theta + \cos \left( \theta + \frac {2\pi}3 \right) + i \sin \left( \theta + \frac {2\pi}3 \right) + \cos \left( \theta + \frac {4\pi}3 \right) + i \sin \left(\theta + \frac {4\pi}3 \right) & = 0 \\ \cos \theta + \cos \left( \theta + \frac {2\pi}3 \right) + \cos \left( \theta + \frac {4\pi}3 \right) + i \left(\sin \theta + \sin \left( \theta + \frac {2\pi}3 \right) + \sin \left(\theta + \frac {4\pi}3 \right)\right) & = 0 \end{aligned}

Equating the real and imaginary parts on both sides,

cos θ + cos ( θ + 2 π 3 ) + cos ( θ + 4 π 3 ) = sin θ + sin ( θ + 2 π 3 ) + sin ( θ + 4 π 3 ) = 0 \implies \cos \theta + \cos \left( \theta + \frac {2\pi}3 \right) + \cos \left( \theta + \frac {4\pi}3 \right) = \sin \theta + \sin \left( \theta + \frac {2\pi}3 \right) + \sin \left(\theta + \frac {4\pi}3 \right) = 0

Therefore, the general solution for x , y , z = θ , θ + 2 π 3 , θ + 4 π 3 x, y, z = \theta, \theta + \frac {2\pi}3, \theta + \frac {4\pi}3 and sin θ sin ( θ + 2 π 3 ) sin ( θ + 4 π 3 ) \sin \theta \sin \left(\theta + \frac {2\pi}3 \right) \sin \left(\theta + \frac {4\pi}3 \right) has no unique solution . The answer is thus None of the others. \boxed{\text{None of the others.}}

Bhaut massst bhaiiii keeep it up good!!!!

Vineet PahRkar - 4 years, 5 months ago

Can you update the solution to focus on why there is no unique solution? Thanks!

Calvin Lin Staff - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...