Complex Phobia 3

Geometry Level 4

If cos x + cos y + cos z = sin x + sin y + sin z = 0 \cos{x} + \cos{y }+ \cos{z} = \sin{x} + \sin{y} + \sin{z} = 0

Find : sin 2 x + sin 2 y + sin 2 z \sin^2 {x} + \sin^2{y} + \sin^2{z}

0 0 3 2 \dfrac{3}{2} 2 3 \dfrac{2}{3} 1 1 1 2 \dfrac{1}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aryan Goyat
Dec 20, 2016

Consider three complex numbers

z1 = cosx+isinx

z2 = cosy+isiny

z3 = cosz+isinz

Its easy to observe that z1+z2+z3 = 0

(z1)^2+(z2)^2+(z3)^2=(-2z1 z2-2z2 z3-2z3 z1) =-2z1 z2*z3(cosx+cosy+cosz-i(sin(x)+sin(y)+sin(z)))

implies real part of (z1)^2+(z2)^2+(z3)^2=0 next its easy

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...