Complex Phobia 4

Geometry Level 4

If α \alpha and β \beta are the roots of the equation z 2 sin 2 x z sin x + 1 = 0 z^2\sin^2{x} - z\sin{x} + 1 = 0

Then find α n . β n \large \alpha^n.\beta^n .

tan 2 n x \tan^{2n}{x} sin 2 n x \sin^{2n}{x} cos 2 n x \cos^{2n}{x} cot 2 n x \cot^{2n}{x} csc 2 n x \csc^{2n}{x}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prakhar Bindal
Dec 15, 2016

Level 4? seriously??

by vieta's product of roots = cosec^2(x)

Tom Engelsman
Jan 16, 2017

Let us find the above roots via the Quadratic Formula:

z s i n ( x ) = 1 ± ( 1 ) 2 4 ( 1 ) ( 1 ) 2 = 1 ± i 3 2 = e i π 3 , e i π 3 ; z sin(x) = \frac{1 \pm \sqrt{(-1)^{2} - 4(1)(1)}}{2} = \frac{1 \pm i \cdot \sqrt{3}}{2} = e^{i \cdot \frac{\pi}{3}}, e^{-i \cdot \frac{\pi}{3}};

which ultimately yields: z = e i π 3 c s c ( x ) ; e i π 3 c s c ( x ) . z = e^{i \cdot \frac{\pi}{3}} \cdot csc(x); e^{-i \cdot \frac{\pi}{3}} \cdot csc(x). Thus the desired root product becomes: [ e i π 3 c s c ( x ) ] n [ e i π 3 c s c ( x ) ] n = ( c s c 2 ( x ) ) n = c s c 2 n ( x ) . [e^{i \cdot \frac{\pi}{3}} \cdot csc(x)]^{n} \cdot [e^{-i \cdot \frac{\pi}{3}} \cdot csc(x)]^{n} = (csc^{2}(x))^{n} = \boxed{csc^{2n}(x)}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...