Complex problem

Algebra Level 3

Find the value of 1 3 + 4 i + 1 3 4 i \frac { 1 }{ \sqrt { 3+4i } } +\frac { 1 }{ \sqrt { 3-4i } } If the value can be expressed as ± a b \pm \frac { a }{ b } , input a + b a+b .

9 41 11 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Square the expression S = 1 3 + 4 i + 1 3 4 i S = \dfrac{1}{\sqrt{3 + 4i}} + \dfrac{1}{\sqrt{3 - 4i}} to get

S 2 = 1 3 + 4 i + 1 3 4 i + 2 ( 3 + 4 i ) ( 3 4 i ) = S^{2} = \dfrac{1}{3 + 4i} + \dfrac{1}{3 - 4i} + \dfrac{2}{\sqrt{(3 + 4i)(3 - 4i)}} =

( 3 4 i ) + ( 3 + 4 i ) ( 3 + 4 i ) ( 3 4 i ) + 2 9 + 16 = 6 25 + 2 5 = 16 25 . \dfrac{(3 - 4i) + (3 + 4i)}{(3 + 4i)(3 - 4i)} + \dfrac{2}{\sqrt{9 + 16}} = \dfrac{6}{25} + \dfrac{2}{5} = \dfrac{16}{25}.

and so S = ± 16 25 = ± 4 5 . S = \pm \sqrt{\dfrac{16}{25}} = \pm \dfrac{4}{5}.

Thus a + b = 4 + 5 = 9 . a + b = 4 + 5 = \boxed{9}.

Amazing! I used trigo tho...

Julian Poon - 6 years, 4 months ago

Log in to reply

Thanks. Yes, there are several ways to approach this one. :)

Brian Charlesworth - 6 years, 4 months ago

Oops ...Did the same way, but forget to take the final square root and clicked on 41..:(

Anandhu Raj - 6 years, 4 months ago

Log in to reply

That's too bad. :( I almost did that too when I first looked at the problem. This is why multiple-choice questions are not my favorite; you don't get a second chance, even though you really did know how to solve the problem.

Brian Charlesworth - 6 years, 4 months ago

Log in to reply

Yeah., you are right...better do maths carefully next time.

Anandhu Raj - 6 years, 4 months ago

Let θ = tan 1 4 3 cos θ = 3 5 \theta = \tan^{-1} {\frac {4}{3}} \Rightarrow \cos {\theta} = \frac {3}{5} and sin θ = 4 5 \sin {\theta} = \frac {4}{5} . Then, we have:

1 3 + 4 i + 1 3 4 i = 1 5 ( 3 5 + 4 5 i ) + 1 5 ( 3 5 4 5 i ) = 1 5 e θ i + 1 5 e θ i \dfrac {1}{\sqrt{3+4i}} + \dfrac {1}{\sqrt{3-4i}} = \dfrac {1}{\sqrt{5(\frac{3}{5}+\frac {4}{5}i)}} + \dfrac {1}{\sqrt{5(\frac{3}{5}-\frac {4}{5}i)}} = \dfrac {1}{\sqrt{5e^{\theta i}}} + \dfrac {1}{\sqrt{5e^{-\theta i}}}

= 1 5 ( e θ i 2 + e θ i 2 ) = 1 5 ( cos θ 2 i sin θ 2 + cos θ 2 + i sin θ 2 ) = 2 5 cos θ 2 = \frac {1}{\sqrt{5}} (e^{-\frac{\theta i}{2}} + e^{\frac{\theta i}{2}}) =\frac {1}{\sqrt{5} } (\cos {\frac{\theta}{2}} - i \sin {\frac{\theta}{2}} + \cos {\frac{\theta}{2}} + i \sin {\frac{\theta}{2}} ) = \frac {2}{\sqrt{5}} \cos {\frac{\theta}{2}}

= 2 5 1 2 ( cos θ + 1 ) = 2 5 1 2 ( 3 5 + 1 ) = 2 5 1 2 ( 8 5 ) = 4 5 = \frac {2}{\sqrt{5}} \sqrt {\frac {1}{2}(\cos {\theta} + 1 )} = \frac {2}{\sqrt{5}} \sqrt {\frac {1}{2}(\frac {3}{5} + 1 )} = \frac {2}{\sqrt{5}} \sqrt {\frac {1}{2}(\frac {8}{5})} = \dfrac {4}{5}

a + b = 4 + 5 = 9 \Rightarrow a+b = 4+5 =\boxed{9}

Masterful. I tried Euler's Formula but I got too hung up on arctan(4/3). Thanks for posting!

Edwin Hughes - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...