Complex root

Algebra Level 2

For i = 1 i = \sqrt{-1} , if i = 1 a + i b \sqrt i = \dfrac1{\sqrt a } + \dfrac i{\sqrt b} , where a a and b b are positive integers, find a × b a\times b .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 17, 2016

i = 1 a + i b Squaring both sides... i = 1 a 1 b + 2 a b i Equating the imaginary part... 1 = 2 a b a b = 2 a b = 4 \begin{aligned} \sqrt{i} & = \frac{1}{\sqrt{a}} + \frac{i}{\sqrt{b}} \quad \quad \quad \quad \space \small \color{#3D99F6}{\text{Squaring both sides...}} \\ i & = \frac{1}{a} - \frac{1}{b} + \frac{2}{\sqrt{ab}}i \quad \quad \small \color{#3D99F6}{\text{Equating the imaginary part...}} \\ \Rightarrow 1 & = \frac{2}{\sqrt{ab}} \\ \sqrt{ab} & = 2 \\ \Rightarrow ab & = \boxed{4} \end{aligned}

Kay Xspre
Jan 17, 2016

Since i = c o s ( 90 ° ) + i s i n ( 90 ° ) i = cos(90°)+isin(90°) , we use the reverse De Moivre's Theorem to find that i = c o s ( 90 ° 2 ) + i s i n ( 90 ° 2 ) = c o s ( 45 ° ) + i s i n ( 45 ° ) = 1 2 + 1 2 i \sqrt{i} = cos(\frac{90°}{2})+isin(\frac{90°}{2}) = cos(45°)+isin(45°) = \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i Other value of it is c o s ( 45 ° + 360 ° 2 ) + i s i n ( 45 ° + 360 ° 2 ) = c o s ( 225 ° ) + i s i n ( 225 ° ) = 1 2 1 2 i cos(45°+\frac{360°}{2})+isin(45°+\frac{360°}{2}) = cos(225°)+isin(225°) = \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}i , but we won't use this other value. As a = b = 2 a = b = 2 , a b = 2 × 2 = 4 ab = 2\times2 = 4

Akhil Bansal
Jan 20, 2016

ι = ( e ι π / 2 ) 1 2 = e ι π / 4 \large \sqrt{\iota} = \left(e^{\iota\pi/2}\right)^{\frac{1}{2}} = e^{\iota\pi/4} e ι π / 4 = cos ( π 4 ) + ι sin ( π 4 ) \large e^{\iota\pi/4} = \cos\left(\dfrac{\pi}{4}\right) + \iota \sin\left(\dfrac{\pi}{4}\right) = ± 1 2 ( 1 + ι ) \large = \pm\dfrac{1}{\sqrt{2}}( 1 + \iota)

Moderator note:

Note that you cannot go from a single value to a multiple value, so that ± \pm in the final line doesn't' make sense.

Instead, you should be explicit and state that the roots are e i π 4 e ^ { i \frac{\pi}{4} } and e ^ i \frac { 5 \pi } { 4} } .

It looks like you misprint the last line. c o s ( π 4 ) = s i n ( π 4 ) = 1 2 cos(\frac{\pi}{4}) = sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}

Kay Xspre - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...