Complex Roots

Algebra Level 2

Let a + b i a+bi and c + d i c+di be the two roots of the quadratic equation i x 2 + ( 6 7 i ) x 21 9 i = 0 , ix^2+(6-7i)x-21-9i=0, where a < c a<c . What is the value of a d + b c ? ad+bc?

i i is the imaginary number that satisfies i 2 = 1. i^2 = -1.

22 22 24 24 21 21 23 23

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Nov 7, 2020

The roots can be computed via the Quadratic Formula:

x = ( 6 + 7 i ) ± ( 6 7 i ) 2 4 ( i ) ( 21 9 i ) 2 i = ( 6 + 7 i ) ± 36 49 84 i + 84 i 36 2 i = ( 6 + 7 i ) ± 49 2 i = ( 6 + 7 i ) ± 7 i 2 i = 3 i , 7 + 3 i . x = \frac{(-6+7i) \pm \sqrt{(6-7i)^2-4(i)(-21-9i)}}{2i} = \frac{(-6+7i) \pm \sqrt{36-49-84i + 84i - 36}}{2i} = \frac{(-6+7i) \pm \sqrt{-49}}{2i} = \frac{(-6+7i) \pm 7i}{2i} = 3i, 7+3i.

Thus a = 0 , b = d = 3 , c = 7 a d + b c = ( 0 ) ( 3 ) + ( 3 ) ( 7 ) = 21 . a =0, b =d = 3, c = 7 \Rightarrow ad+bc = (0)(3) + (3)(7) = \boxed{21}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...