Complex Series!

Algebra Level 5

If z 23 = 1 , z 1 { z }^{ 23 }=1,z\neq 1 , find the value of r = 0 22 1 1 + z r + z 2 r \displaystyle \sum _{ r=0 }^{ 22 } \frac { 1 }{ 1+z^{ r }+z^{ 2r } } to two decimal places.


The answer is 15.33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Manan Agrawal
May 17, 2018

Note that

r = 1 22 1 1 + z r + z 2 r = r = 1 22 z r 1 z 3 r 1 = r = 1 22 z 24 r 1 z 3 r 1 = r = 1 22 j = 0 7 z 3 j r = j = 0 7 r = 1 22 z 3 j r = 22 + j = 1 7 r = 1 22 z 3 j r = 22 + j = 1 7 ( r = 0 22 z 3 j r 1 ) = 22 + j = 1 7 ( z 69 j 1 z 3 j 1 1 ) = 22 7 = 15 \begin{aligned} \sum _{ r=1 }^{ 22 } \frac { 1 }{ 1+z^{ r }+z^{ 2r } } & =\; \sum _{ r=1 }^{ 22 } \frac { z^{ r }-1 }{ z^{ 3r }-1 } \; =\; \sum _{ r=1 }^{ 22 } \frac { z^{ 24r }-1 }{ z^{ 3r }-1 } \; =\; \sum _{ r=1 }^{ 22 } \sum _{ j=0 }^{ 7 } z^{ 3jr } \\ & =\; \sum _{ j=0 }^{ 7 } \sum _{ r=1 }^{ 22 } z^{ 3jr }\; =\; 22+\sum _{ j=1 }^{ 7 } \sum _{ r=1 }^{ 22 } z^{ 3jr }\; =\; 22+\sum _{ j=1 }^{ 7 } \left( \sum _{ r=0 }^{ 22 } z^{ 3jr }-1 \right) \\ & =\; 22+\sum _{ j=1 }^{ 7 } \left( \frac { z^{ 69j }-1 }{ z^{ 3j }-1 } -1 \right) \; =\; 22-7\; =\; 15 \end{aligned}

and hence

r = 0 22 1 1 + z r + z 2 r = 1 3 + 15 = 15 1 3 \begin{aligned} \sum _{ r=0 }^{ 22 } \frac { 1 }{ 1+z^{ r }+z^{ 2r } } \end{aligned}= \frac { 1 }{ 3 } +15=\boxed{{\color{#D61F06}15\frac { 1 }{ 3 }}}

Thanks to Mark Heninings

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...