Complex sin

Algebra Level 2

( sin ( x + i y ) ) = ? \large \Re ( \sin(x+iy)) = \ ?

Notations:

sinh ( x ) cos ( y ) \sinh(x)\cos(y) sinh ( x + i y ) \sinh(x+iy) sinh ( x ) cosh ( y ) \sinh(x)\cosh(y) cosh ( x + i y ) \cosh(x+iy) sin ( x ) cosh ( y ) \sin(x)\cosh(y) cos ( x + i y ) \cos(x+iy) sin ( x ) \sin(x)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The real part is in green .

You should put a backslash "\" before function for example \Re \Re , \sin x sin x \sin x , \sinh x sinh x \sinh x , \cos x cos x \cos x and \cosh x cosh x \cosh x . Note that the function names sin \sin , cos \cos , sinh \sinh , cosh \cosh are not in italic (slanding) but the variable x x is in italic.

Chew-Seong Cheong - 2 years, 6 months ago
Chew-Seong Cheong
Dec 10, 2018

( sin ( x + i y ) ) = ( i ( e i ( x + i y ) e i ( x + i y ) ) 2 ) = ( i ( e i x + y e i x y ) ) 2 ) = ( i ( e y ( cos x i sin x ) e y ( cos x + i sin x ) ) 2 ) = ( sin x ( e y + e y ) + i cos x ( e y e y ) 2 ) = sin x ( e y + e y ) 2 = sin x cosh y \begin{aligned} \Re (\sin(x+iy)) & = \Re \left(\frac {i\left(e^{-i(x+iy)} - e^{i(x+iy)}\right)}2\right) \\ & = \Re \left(\frac {i\left(e^{-ix+y} - e^{ix-y)}\right)}2\right) \\ & = \Re \left(\frac {i\left(e^y(\cos x - i\sin x) - e^{-y}(\cos x + i\sin x)\right)}2\right) \\ & = \Re \left(\frac {\sin x \left(e^y + e^{-y}\right) + i \cos x \left(e^y - e^{-y}\right)}2 \right) \\ & = \frac {\sin x \left(e^y + e^{-y} \right)}2 \\ & = \boxed{\sin x \cosh y} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...