Complex Sum.

Algebra Level 3

1 a 1 + ω + 1 a 2 + ω + 1 a 3 + ω + + 1 a n + ω = i \dfrac{1}{a_1+\omega} + \dfrac{1}{a_2+\omega} + \frac 1{a_3+\omega} + \cdots + \dfrac{1}{a_n+\omega}=-i

Given that a 1 , a 2 , , a n R a_1,a_2,\cdots,a_n \in \mathbb{R} satisfy the equation above, evaluate r = 1 n 2 a r 1 a r 2 a r + 1 \displaystyle \sum_{r=1}^n \dfrac{2a_r-1}{a_r^2-a_r+1} .


Notations:

  • i = 1 i = \sqrt{-1} denotes the imaginary unit
  • ω \omega denotes the cube root of unity.
n n 0 0 i i ω \omega 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Moehring
Mar 12, 2019

First, note that if a a is real, then Real part of 1 a + ω = Real part of a + ω 2 a 2 a + 1 = a 1 2 a 2 a + 1 \text{Real part of } \frac{1}{a+\omega} = \text{ Real part of } \frac{a+\omega^2}{a^2-a+1} = \frac{a-\tfrac{1}{2}}{a^2-a+1}

In particular, if we just consider the real part of the given sum r = 1 n 1 a r + ω = i \sum_{r=1}^n \frac{1}{a_r+\omega} = -i then we find that 0 = Real part of i = Real part of r = 1 n 1 a r + ω = r = 1 n ( Real part of 1 a r + ω ) = r = 1 n a r 1 2 a r 2 a r + 1 \begin{aligned} 0 &= \text{ Real part of } -i \\ &= \text{ Real part of } \sum_{r=1}^n \frac{1}{a_r+\omega} \\ &= \sum_{r=1}^n \left(\text{Real part of } \frac{1}{a_r+\omega}\right) \\ &= \sum_{r=1}^n \frac{a_r-\tfrac{1}{2}}{a_r^2-a_r+1} \end{aligned} so now just by multiplying both sides by two, we have r = 1 n 2 a r 1 a r 2 a r + 1 = 0. \sum_{r=1}^n \frac{2a_r-1}{a_r^2-a_r+1} = \boxed{0.}

Nice solution.

Also read my solution.

Vilakshan Gupta - 2 years, 3 months ago
Vilakshan Gupta
Mar 13, 2019

Note that a 2 a + 1 = ( a + ω ) ( a + ω 2 ) a^2-a+1=(a+\omega)(a+\omega^2) .

Also note that 2 a 1 = ( a + ω ) + ( a + ω 2 ) 2a-1=(a+\omega)+(a+\omega^2)

So the given sum can be written as r = 1 n 2 a r 1 a r 2 a r + 1 = r = 1 n ( a r + ω ) + ( a r + ω 2 ) ( a r + ω ) ( a r + ω 2 ) = r = 1 n 1 a r + ω + r = 1 n 1 a + ω 2 = i i = 0 \begin{aligned} \sum_{r=1}^n \dfrac{2a_r-1}{a_r^2-a_r+1}=\sum_{r=1}^n \dfrac{(a_r+\omega)+(a_r+\omega^2)}{(a_r+\omega)(a_r+\omega^2)} & =\sum_{r=1}^n \dfrac{1}{a_r+\omega} + \sum_{r=1}^n \dfrac{1}{a+\omega^2} & = i - i & =\boxed{0} \end{aligned}

The latter sum can be found by taking conjugates on both sides of the original equation as all a r R a_r \in \mathbb{R} we can write r = 1 n 1 a + ω 2 = i \displaystyle \sum_{r=1}^n \dfrac{1}{a+\omega^2}=-i .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...