Complex Summation!

Calculus Level 3

n = 1 1 n 2 + 9 = π T coth ( Q π ) 1 S \sum_{n=1}^{\infty}{\frac {1}{{n^2}+9}} = \frac{\pi}{T} \coth {\left (Q\pi\right)}-\frac{1}{S}

The above summation holds true for positive integers T T , Q Q and S S . Find T + Q + S T+Q+S .

Inspiration: Aditya Kumar


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 13, 2018

Relevant wiki: Digamma Function

S = n = 1 1 n 2 + 9 = n = 1 1 ( n 3 i ) ( n + 3 i ) where i = 1 is the imaginary unit. = n = 1 1 6 i ( 1 n 3 i 1 n + 3 i ) Digamma function ψ 0 ( 1 + z ) = n = 1 ( 1 n 1 z + n ) γ = 1 6 i ( ψ 0 ( 1 + 3 i ) ψ 0 ( 1 3 i ) ) ψ 0 ( 1 + z ) = ψ 0 ( z ) + 1 z = 1 6 i ( ψ ( 3 i ) + 1 3 i ψ ( 3 i ) π cot ( 3 π i ) ) and ψ 0 ( 1 z ) ψ 0 ( z ) = π cot ( π z ) = 1 18 π 6 ( e 3 π + e 3 π e 3 π e 3 π ) = π 6 coth ( 3 π ) 1 18 \begin{aligned} S & = \sum_{n=1}^\infty \frac 1{n^2+9} \\ & = \sum_{n=1}^\infty \frac 1{(n-3i)(n+3i)} & \small \color{#3D99F6} \text{where }i = \sqrt{-1} \text{ is the imaginary unit.} \\ & = \sum_{n=1}^\infty \frac 1{6i} \left(\frac 1{n-3i} - \frac 1{n+3i} \right) & \small \color{#3D99F6} \text{Digamma function }\psi_0 (1+z) = \sum_{n=1}^\infty \left(\frac 1n - \frac 1{z+n} \right) - \gamma \\ & = \frac 1{6i} ({\color{#3D99F6}\psi_0(1+3i)}- {\color{#D61F06}\psi_0(1-3i)}) & \small \color{#3D99F6} \psi_0 (1+z) = \psi_0 (z) + \frac 1z \\ & = \frac 1{6i} \left(\color{#3D99F6}\psi(3i) + \frac 1{3i} \color{#D61F06} - \psi(3i) - \pi \cot (3\pi i) \right) & \small \color{#D61F06} \text{ and }\psi_0 (1-z) - \psi_0 (z) = \pi \cot (\pi z) \\ & = - \frac 1{18} - \frac \pi6 \left(\frac {e^{-3\pi}+e^{3\pi}}{e^{-3\pi}-e^{3\pi}}\right) \\ & = \frac \pi 6 \coth (3\pi) - \frac 1{18} \end{aligned}

Therefore, T + S + Q = 6 + 3 + 18 = 27 T+S+Q = 6+3+18= \boxed{27}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...