complex theory

Algebra Level 3

find the minimum value of |1+z| + |1-z| . Here, | | is modulus of a complex no. and z is a complex no.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Soumava Pal
Oct 2, 2014

taking the points P(1,0),Q(-1,0) and Z we see that mod(1+z)=mod(-1-z)=magnitude of vector QZ. similarly mod(1-z)=magnitude of vector PZ. BY TRIANGULAR INEQUALITY, modPZ+modQZ>=modPQ=2 Hence the answer..

L e t s a s s u m e t h a t z = x + y i , w h e r e i ( i o t a ) = 1 a n d x a n d y a r e r e a l n u m b e r s . N o w , 1 + z + 1 z = ( 1 + x ) + ( y i ) + ( 1 x ) ( y i ) = ( 1 + x ) 2 + ( y i ) 2 + ( 1 x ) 2 + ( y i ) 2 = x 2 + 1 y 2 + 2 x y + x 2 + 1 2 x y y 2 C a n c e l l i n g , 1 + z + 1 z = 2 + 2 ( x 2 y 2 ) S i n c e b o t h x a n d y a r e r e a l n u m b e r s , S o , t h e m i n i m u m v a l u e o f t h e d i f f e r e n c e o f t h e s q u a r e s o f t w o r e a l n u m b e r s i s 0. T h e r e f o r e , { 1 + z + 1 z } m i n = 2 + 2 ( 0 ) o r , { 1 + z + 1 z } m i n = 2 Let's\quad assume\quad that\quad z=x+yi,\quad where\quad i(iota)=\sqrt { -1 } \\ and\quad x\quad and\quad y\quad are\quad real\quad numbers.\\ Now,\quad |1+z|+|1-z|=\quad |(1+x)+(yi)|\quad +\quad |(1-x)-(yi)|\\ \qquad \qquad \qquad \qquad \quad \quad =\quad { (1+x) }^{ 2 }+{ (yi) }^{ 2 }\quad +\quad { (1-x) }^{ 2 }+({ -yi })^{ 2 }\\ \qquad \qquad \qquad \qquad \quad \quad =\quad { x }^{ 2 }+1-{ y }^{ 2 }+2xy+{ x }^{ 2 }+1-2xy-{ y }^{ 2 }\\ Cancelling,\quad |1+z|+|1-z|\quad =\quad 2+2({ x }^{ 2 }-{ y }^{ 2 })\\ Since\quad both\quad x\quad and\quad y\quad are\quad real\quad numbers,\\ So,\quad the\quad minimum\quad value\quad of\quad the\quad difference\quad of\quad the\\ squares\quad of\quad two\quad real\quad numbers\quad is\quad 0.\quad Therefore,\\ { \{ |1+z|+|1-z|\} }_{ min }=\quad 2+2(0)\\ or,\quad { \{ |1+z|+|1-z|\} }_{ min }=\quad 2

CHEERS!!

Ankush Gogoi
Sep 19, 2014

The solution of this question is the sum of minimum distance of any arbitrary point z from (-1,0) and (1,0) when plotted in the Argand plane...By plotting it we find that the minimum distance will be when z is at the origin...hence min(modulus(1+z)) =1 also min(modulus(1-z))=1..

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...