find the minimum value of |1+z| + |1-z| . Here, | | is modulus of a complex no. and z is a complex no.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L e t ′ s a s s u m e t h a t z = x + y i , w h e r e i ( i o t a ) = − 1 a n d x a n d y a r e r e a l n u m b e r s . N o w , ∣ 1 + z ∣ + ∣ 1 − z ∣ = ∣ ( 1 + x ) + ( y i ) ∣ + ∣ ( 1 − x ) − ( y i ) ∣ = ( 1 + x ) 2 + ( y i ) 2 + ( 1 − x ) 2 + ( − y i ) 2 = x 2 + 1 − y 2 + 2 x y + x 2 + 1 − 2 x y − y 2 C a n c e l l i n g , ∣ 1 + z ∣ + ∣ 1 − z ∣ = 2 + 2 ( x 2 − y 2 ) S i n c e b o t h x a n d y a r e r e a l n u m b e r s , S o , t h e m i n i m u m v a l u e o f t h e d i f f e r e n c e o f t h e s q u a r e s o f t w o r e a l n u m b e r s i s 0 . T h e r e f o r e , { ∣ 1 + z ∣ + ∣ 1 − z ∣ } m i n = 2 + 2 ( 0 ) o r , { ∣ 1 + z ∣ + ∣ 1 − z ∣ } m i n = 2
CHEERS!!
The solution of this question is the sum of minimum distance of any arbitrary point z from (-1,0) and (1,0) when plotted in the Argand plane...By plotting it we find that the minimum distance will be when z is at the origin...hence min(modulus(1+z)) =1 also min(modulus(1-z))=1..
Problem Loading...
Note Loading...
Set Loading...
taking the points P(1,0),Q(-1,0) and Z we see that mod(1+z)=mod(-1-z)=magnitude of vector QZ. similarly mod(1-z)=magnitude of vector PZ. BY TRIANGULAR INEQUALITY, modPZ+modQZ>=modPQ=2 Hence the answer..