Complex Trignometry

Algebra Level 4

If x = t a n ( i ) x=tan(i) , find the value of I m ( x ) Im(x) .

Note:
1) i = 1 i = \sqrt{-1} .
2) I m ( z ) Im(z) represents the imaginary part of the complex number z z .


The answer is 0.76159415595576488811.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Harsh Depal
Apr 1, 2014

e i a = c o s ( a ) + i s i n ( a ) e i a + e i a = 2 c o s ( a ) A n d e i a e i a = 2 i s i n ( a ) i t a n ( a ) = e i a + e i a e i a e i a i t a n ( i ) = e 1 + e 1 e 1 e 1 t a n ( i ) = e 1 + e 1 e 1 e 1 i I m ( x ) = e 1 + e 1 e 1 e 1 I m ( x ) = 0.7615 { e }^{ ia }=cos(a)+isin(a)\\ \therefore { \quad e }^{ ia }+{ e }^{ -ia }=2cos(a)\\ And\\ \quad \quad { e }^{ ia }-{ e }^{ -ia }=2isin(a)\\ i\quad tan(a)=\frac { { e }^{ ia }+{ e }^{ -ia } }{ { e }^{ ia }-{ e }^{ -ia } } \\ i\quad tan(i)=\frac { { e }^{ -1 }+{ e }^{ 1 } }{ { e }^{ -1 }-{ e }^{ 1 } } \\ \\ \quad tan(i)=\frac { { e }^{ 1 }+{ e }^{ -1 } }{ { e }^{ 1 }-{ e }^{ -1 } } \quad i\\ \quad Im(x)=\frac { { e }^{ 1 }+{ e }^{ -1 } }{ { e }^{ 1 }-{ e }^{ -1 } } \\ \quad Im(x)=\boxed { 0.7615 }

Note: Avoid having text in your Latex. Just place words outside of your equations. I've edited your problem as a reference.

Calvin Lin Staff - 7 years, 2 months ago

Log in to reply

Thanks Calvin,i am new to posting questions and solutions

Harsh Depal - 7 years, 2 months ago

Log in to reply

You can use \cos for cos, \sin for sin, etc.

jatin yadav - 7 years, 2 months ago

Isn't your equation wrong in third step?

Tarunbir Singh - 5 years, 6 months ago

t a n a tan a = c o s a / s i n a cos a/sin a ??

Vishal Yadav - 4 years, 3 months ago
Adib Batous
Mar 7, 2016

we can use Taylor series

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...