If cosA+ cosB+cosC=0, sinA+sinB+sinC=0 and A+B+C=180', then the value of cos3A+cos3B+cos3C is:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let us take z1=cosA+i sinA,z2=cosB+i sinB, z3=cosC+i sinC →z1+z2+z3=0 →z1^3+z2^3+z3^3=3.z1.z2.z3 =3e^(i(A+B+C)) →z1^3+z2^3+z3^3=e^i3A+e^i3B+e^i3C →3e^(i(A+B+C))=e^i3A+e^i3B+e^i3C Equating real perts on both sides we get: 3cos(A+B+C)=3cos(pi) →-3=cos3A+cos3B+cos3C