Complex Trigo #1

Geometry Level 3

( 1 + tan 1 ) ( 1 + tan 2 ) ( 1 + tan 3 ) ( 1 + tan 4 3 ) ( 1 + tan 4 4 ) \large{(1+\tan 1^\circ)(1+\tan 2^\circ)(1+\tan 3^\circ)\cdots(1+\tan 43^\circ)(1+\tan 44^\circ)}

Find the value of the expression above.

0 1 2 22 { 2 }^{ 22 } Not Defined 2 23 { 2 }^{ 23 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nelson Mandela
Aug 23, 2015

There is an identity that,

(1+tanA)(1+tanB) = 2 if A+B = 45 degrees.

The proof is actually very simple. Just expand.

We get 1-tanAtanB = TanA+TanB. which also means that tan(A+B) = tan(45 degrees) = 1.

So, as there are 22 pairs in the question, the answer is 2^22.

Mateus Gomes
Feb 8, 2016

w h e n x + y = 45 º {when~~x+y=45º} tan ( x ) + tan ( y ) 1 tan ( x ) × tan ( y ) = 1 \frac{\tan(x)+\tan(y)}{1-\tan(x)\times\tan(y)}=1 tan ( x ) + tan ( y ) = 1 tan ( x ) × tan ( y ) \therefore \tan(x)+\tan(y)=1-\tan(x)\times\tan(y) tan ( x ) + tan ( y ) + tan ( x ) × tan ( y ) ( + 1 ) = 1 ( + 1 ) \tan(x)+\tan(y)+\tan(x)\times\tan(y)~~~~\color{#3D99F6}{(+1)}=1~~~~\color{#3D99F6}{(+1)} tan ( x ) + tan ( y ) + tan ( x ) × tan ( y ) + 1 = 2 = ( 1 + tan ( x ) ) ( 1 + tan ( y ) ) \tan(x)+\tan(y)+\tan(x)\times\tan(y)+1=2={\boxed{(1+\tan(x))(1+\tan(y))}} P = ( 1 + tan 1 ) ( 1 + tan 2 ) ( 1 + tan 3 ) ( 1 + tan 4 3 ) ( 1 + tan 4 4 ) P={(1+\tan 1^\circ)(1+\tan 2^\circ)(1+\tan 3^\circ)\cdots(1+\tan 43^\circ)(1+\tan 44^\circ)} P = ( 1 + tan ( 1 ) ) ( 1 + tan ( 4 4 ) ) ( 1 + tan ( 2 ) ( 1 + tan ( 4 3 ) ) . . . P=(1+\tan(1^\circ))(1+\tan(44^\circ))(1+\tan(2^\circ)(1+\tan(43^\circ))... P = 2 × 2 × × 2 22 times = 2 22 P=\underbrace { 2\times 2\times \dots \times 2 }_{ 22 \, \text{times} } = {2}^{22} 2 m = 2 22 2^{m}=2^{22} m = 22 \color{#3D99F6}{\boxed{m=22}}

Shyam Gupta
Aug 23, 2015

(1+tan44) = 2/(1+tan1).. similarly (1+tan 43) = 2/(1+tan42) we do this till tan23 .. multiplying will cancel out all and remainder will be 2^22 as there are 22 numbers till 23 from 45

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...