( 1 + tan 1 ∘ ) ( 1 + tan 2 ∘ ) ( 1 + tan 3 ∘ ) ⋯ ( 1 + tan 4 3 ∘ ) ( 1 + tan 4 4 ∘ )
Find the value of the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
w h e n x + y = 4 5 º 1 − tan ( x ) × tan ( y ) tan ( x ) + tan ( y ) = 1 ∴ tan ( x ) + tan ( y ) = 1 − tan ( x ) × tan ( y ) tan ( x ) + tan ( y ) + tan ( x ) × tan ( y ) ( + 1 ) = 1 ( + 1 ) tan ( x ) + tan ( y ) + tan ( x ) × tan ( y ) + 1 = 2 = ( 1 + tan ( x ) ) ( 1 + tan ( y ) ) P = ( 1 + tan 1 ∘ ) ( 1 + tan 2 ∘ ) ( 1 + tan 3 ∘ ) ⋯ ( 1 + tan 4 3 ∘ ) ( 1 + tan 4 4 ∘ ) P = ( 1 + tan ( 1 ∘ ) ) ( 1 + tan ( 4 4 ∘ ) ) ( 1 + tan ( 2 ∘ ) ( 1 + tan ( 4 3 ∘ ) ) . . . P = 2 2 times 2 × 2 × ⋯ × 2 = 2 2 2 2 m = 2 2 2 m = 2 2
(1+tan44) = 2/(1+tan1).. similarly (1+tan 43) = 2/(1+tan42) we do this till tan23 .. multiplying will cancel out all and remainder will be 2^22 as there are 22 numbers till 23 from 45
Problem Loading...
Note Loading...
Set Loading...
There is an identity that,
(1+tanA)(1+tanB) = 2 if A+B = 45 degrees.
The proof is actually very simple. Just expand.
We get 1-tanAtanB = TanA+TanB. which also means that tan(A+B) = tan(45 degrees) = 1.
So, as there are 22 pairs in the question, the answer is 2^22.