If z is complex number which satisfies the relation z 3 = ( z + 1 ) 3 , find the sum of the real parts of all the roots of z .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
( z + 1 z ) 3 = 1 = cos 0 + i sin 0 = cos 2 n π + i sin 2 n π
∴ z + 1 z = ( cos 2 n π + i sin 2 n π ) 3 1 = cos 3 2 n π + i sin 3 2 n π ; ( n = 0 , 1 , 2 )
∴ z + 1 z = cos θ + i sin θ ; θ = 3 2 n π , ( n = 0 , 1 , 2 )
∴ z + 1 − z z = 1 − cos θ − i sin θ cos θ + i sin θ
∴ z = 2 sin 2 2 θ − 2 i sin 2 θ . cos 2 θ cos θ + i sin θ
= 2 sin ( θ / 2 ) [ sin ( θ / 2 ) − i cos ( θ / 2 ) ] cos θ + i sin θ . [ sin ( θ / 2 ) + i cos ( θ / 2 ) ] [ sin ( θ / 2 ) + i cos ( θ / 2 ) ]
= 2 sin ( θ / 2 ) [ sin 2 ( θ / 2 ) + cos 2 ( θ / 2 ) ] ( cos θ + i sin θ ) [ sin ( θ / 2 ) + i cos ( θ / 2 ) ]
Simplifying further and grouping the real and imaginary parts;
= 2 sin ( θ / 2 ) − [ sin θ cos ( θ / 2 ) − cos θ sin ( θ / 2 ) ] + i [ cos θ cos ( θ / 2 ) + sin θ sin ( θ / 2 ) ]
∴ z = 2 sin ( θ / 2 ) − sin ( θ / 2 ) + i cos ( θ / 2 ) = − 2 1 + 2 i cot 2 θ ; where θ = 3 2 n π .
Here n = 0 , 1 , 2 ; but when n = 0 , imaginary part is not defined.
∴ n = 0
∴ there are only two roots corresponding to n = 1 , 2 ,
∴ sum of the real parts of two roots = − 2 1 − 2 1 = − 1 .
Problem Loading...
Note Loading...
Set Loading...
The equation simplifies to 3 z 2 + 3 z + 1 = 0 . The sum of the roots is − 1 by Viete.