Complex World (Correct answer updated)

Algebra Level 3

If z z is complex number which satisfies the relation z 3 = ( z + 1 ) 3 { z }^{ 3 }={ (z+1) }^{ 3 } , find the sum of the real parts of all the roots of z z .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Dec 30, 2015

The equation simplifies to 3 z 2 + 3 z + 1 = 0 3z^2+3z+1=0 . The sum of the roots is 1 \boxed{-1} by Viete.

Swapnil Roge
Dec 30, 2015

( z z + 1 ) 3 = 1 = cos 0 + i sin 0 = cos 2 n π + i sin 2 n π { \left( \frac { z }{ z+1 } \right) }^{ 3 }=1=\cos { 0+i\sin { 0=\cos { 2n\pi +i\sin { 2n\pi } } } }

z z + 1 = ( cos 2 n π + i sin 2 n π ) 1 3 = cos 2 n π 3 + i sin 2 n π 3 ; ( n = 0 , 1 , 2 ) \therefore \quad \frac { z }{ z+1 } ={ (\cos { 2n\pi +i\sin { 2n\pi } } ) }^{ \frac { 1 }{ 3 } }=\cos { \frac { 2n\pi }{ 3 } +i\sin { \frac { 2n\pi }{ 3 } } ;\quad (n=0,1,2) }

z z + 1 = cos θ + i sin θ ; θ = 2 n π 3 , ( n = 0 , 1 , 2 ) \therefore \quad \frac { z }{ z+1 } =\cos { \theta } +i\sin { \theta } ;\quad \theta =\frac { 2n\pi }{ 3 } ,\quad \quad (n=0,1,2)

z z + 1 z = cos θ + i sin θ 1 cos θ i sin θ \therefore \quad \frac { z }{ z+1-z } =\frac { \cos { \theta +i\sin { \theta } } }{ 1-\cos { \theta -i\sin { \theta } } }

z = cos θ + i sin θ 2 sin 2 θ 2 2 i sin θ 2 . cos θ 2 \therefore \quad z=\frac { \cos { \theta +i\sin { \theta } } }{ 2\sin ^{ 2 }{ \frac { \theta }{ 2 } -2i\sin { \frac { \theta }{ 2 } .\cos { \frac { \theta }{ 2 } } } } }

= cos θ + i sin θ 2 sin ( θ / 2 ) [ sin ( θ / 2 ) i cos ( θ / 2 ) ] . [ sin ( θ / 2 ) + i cos ( θ / 2 ) ] [ sin ( θ / 2 ) + i cos ( θ / 2 ) ] =\frac { \cos { \theta +i\sin { \theta } } }{ 2\sin { { (\theta }/{ 2) } } \left[ \sin { { (\theta }/{ 2)-i\cos { ({ \theta }/{ 2) } } } } \right] } .\frac { \left[ \sin { { (\theta }/{ 2)+i\cos { ({ \theta }/{ 2) } } } } \right] }{ \left[ \sin { { (\theta }/{ 2)+i\cos { ({ \theta }/{ 2) } } } } \right] }

= ( cos θ + i sin θ ) [ sin ( θ / 2 ) + i cos ( θ / 2 ) ] 2 sin ( θ / 2 ) [ sin 2 ( θ / 2 ) + cos 2 ( θ / 2 ) ] =\frac { (\cos { \theta +i\sin { \theta } )\left[ \sin { { (\theta }/{ 2)+i\cos { ({ \theta }/{ 2) } } } } \right] } }{ 2\sin { { (\theta }/{ 2) } } \left[ \sin ^{ 2 }{ \left( { \theta }/{ 2 } \right) +\cos ^{ 2 }{ \left( { \theta }/{ 2 } \right) } } \right] }

Simplifying further and grouping the real and imaginary parts;

= [ sin θ cos ( θ / 2 ) cos θ sin ( θ / 2 ) ] + i [ cos θ cos ( θ / 2 ) + sin θ sin ( θ / 2 ) ] 2 sin ( θ / 2 ) =\frac { -\left[ \sin { \theta \cos { ({ \theta }/{ 2)-\cos { \theta \sin { \left( { \theta }/{ 2 } \right) } } } } } \right] +i\left[ \cos { \theta \cos { \left( { \theta }/{ 2 } \right) +\sin { \theta \sin { \left( { \theta }/{ 2 } \right) } } } } \right] }{ 2\sin { ({ \theta }/{ 2) } } }

z = sin ( θ / 2 ) + i cos ( θ / 2 ) 2 sin ( θ / 2 ) = 1 2 + i 2 cot θ 2 \therefore \quad z=\frac { -\sin { ({ \theta }/{ 2)+i\cos { \left( { \theta }/{ 2 } \right) } } } }{ 2\sin { \left( { \theta }/{ 2 } \right) } } =-\frac { 1 }{ 2 } +\frac { i }{ 2 } \cot { \frac { \theta }{ 2 } } ; where θ = 2 n π 3 \theta =\frac { 2n\pi }{ 3 } .

Here n = 0 , 1 , 2 n=0,1,2 ; but when n = 0 n=0 , imaginary part is not defined.

n 0 \therefore \quad n\neq 0

\therefore there are only two roots corresponding to n = 1 , 2 n=1,2 ,

\therefore sum of the real parts of two roots = 1 2 1 2 = 1 -\frac { 1 }{ 2 } -\frac { 1 }{ 2 } =\boxed{-1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...