Complex! Yet Lollipop!

Calculus Level 3

Evaluate

3 99 ( 1 + x ) [ ( 1 x + x 2 ) ( 1 + x + x 2 ) + x 2 ] 1 + 2 x + 3 x 2 + 4 x 3 + 3 x 4 + 2 x 5 + x 6 d x . \lfloor \int_3^{99} { \frac { \left( 1 + x \right) \left[ \left( 1 - x + { x }^{ 2 } \right) \left( 1 + x + { x }^{ 2 } \right) + { x }^{ 2 } \right] }{ 1 + 2x + 3{ x }^{ 2 } + 4{ x }^{ 3 } + 3{ x }^{ 4 } + 2{ x }^{ 5 } + { x }^{ 6 } } dx } \rfloor.

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 26, 2017

F ( 99 ) F ( 3 ) = 3 99 ( 1 + x ) [ ( 1 x + x 2 ) ( 1 + x + x 2 ) + x 2 ] 1 + 2 x + 3 x 2 + 4 x 3 + 3 x 4 + 2 x 5 + x 6 d x = 3 99 ( 1 + x ) [ ( 1 + x 2 x ) ( 1 + x 2 + x ) + x 2 ] 1 + 2 x + x 2 + 2 x 2 + 4 x 3 + 2 x 4 + x 4 + 2 x 5 + x 6 d x = 3 99 ( 1 + x ) [ ( 1 + x 2 ) 2 x 2 + x 2 ] ( 1 + x ) 2 + 2 x 2 ( 1 + x ) 2 + x 4 ( 1 + x ) 2 d x = 3 99 ( 1 + x ) ( 1 + x 2 ) 2 ( 1 + x ) 2 ( 1 + 2 x 2 + x 4 ) d x = 3 99 ( 1 + x ) ( 1 + x 2 ) 2 ( 1 + x ) 2 ( 1 + x 2 ) 2 d x = 3 99 1 1 + x d x = ln ( 1 + x ) 3 99 = ln 100 ln 4 = ln 25 3.2189 \begin{aligned} F(99) - F(3) & = \int_3^{99} \frac {(1+x)\left[\left(1-x+x^2\right) \left(1+x+x^2\right)+ x^2 \right]}{1+2x+{\color{#3D99F6}3x^2} +4x^3+{\color{#3D99F6}3x^4}+2x^5+x^6} dx \\ & = \int_3^{99} \frac {(1+x)\left[\left({\color{#3D99F6}1+x^2}{\color{#D61F06}-x}\right) \left({\color{#3D99F6}1+x^2}{\color{#D61F06}+x}\right)+ x^2 \right]}{1+2x+{\color{#3D99F6}x^2 +2x^2}+4x^3+{\color{#3D99F6}2x^4+x^4}+2x^5+x^6} dx \\ & = \int_3^{99} \frac {(1+x)\left[{\color{#3D99F6}(1+x^2)^2}{\color{#D61F06}-x^2}+ x^2 \right]}{(1+x)^2+2x^2(1+x)^2+x^4(1+x)^2} dx \\ & = \int_3^{99} \frac {(1+x)(1+x^2)^2}{(1+x)^2(1+2x^2+x^4)} dx \\ & = \int_3^{99} \frac {(1+x)(1+x^2)^2}{(1+x)^2(1+x^2)^2} dx \\ & = \int_3^{99} \frac 1{1+x} dx \\ & = \ln (1+x) \bigg|_3^{99} = \ln 100 - \ln 4 = \ln 25 \approx 3.2189 \end{aligned}

F ( 99 ) F ( 3 ) = 3 \implies \lfloor F(99) - F(3) \rfloor = \boxed{3}

@Chew-Seong Cheong , Really class solution sir. Mine was very lengthy.

Priyanshu Mishra - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...