Complex_01

Algebra Level pending

If x + y i x+yi , a + b i a+bi and a b i a-bi are 3 complex numbers verifying the relation x + y i = a + b i a b i x+yi=\frac{a + bi}{a - bi} , then what is what is to value of x 2 + y 2 x^{2}+y^{2} ?

N.B. x , y , a , b x,y,a,b are real numbers and i i = 1 \sqrt{-1}

a 2 b 2 a^{2}-b^{2} a 2 + b 2 a^{2}+b^{2} 1 1 2 a b 2ab

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x + i y = a + i b a i b = a 2 b 2 + 2 i a b a 2 + b 2 x+iy=\dfrac {a+ib}{a-ib}=\dfrac {a^2-b^2+2iab}{a^2+b^2}

x 2 + y 2 = ( a 2 b 2 ) 2 + 4 a 2 b 2 ( a 2 + b 2 ) 2 \implies x^2+y^2=\dfrac {(a^2-b^2)^2+4a^2b^2}{(a^2+b^2)^2}

= ( a 2 + b 2 ) 2 ( a 2 + b 2 ) 2 = 1 =\dfrac {(a^2+b^2)^2}{(a^2+b^2)^2}=\boxed 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...