Complexity! (5)

i z 3 + z 2 z + i = 0 \large i{z}^{3} + z^{2} - z + i = 0

Given the above where z z is a complex number, find the value of 2016 z 2016 | z | .

Notations:


For more problems on complex numbers, click here .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 23, 2016

i z 3 + z 2 z + i = 0 z 2 ( i z + 1 ) z + i = 0 z 2 i ( z + i ) z + i = 0 ( i z ) ( z 2 i + 1 ) = 0 ( i z ) ( z 2 + i ) i = 0 ( i z ) ( z 2 + i ) = 0 \begin{aligned} iz^3 + z^2 - z + i & = 0 \\ z^2(iz + 1) - z + i & = 0 \\ \frac {z^2}i (-z + i) - z + i & = 0 \\ (i - z)\left( \frac {z^2}i + 1\right) & = 0 \\ \frac {(i-z)(z^2+i)}i & = 0 \\ (i-z)(z^2+i) & = 0 \end{aligned}

z = { i z = 1 ± i z = 1 \implies z = \begin{cases} i & \implies |z| = 1 \\ \pm \sqrt{-i} & \implies |z| = 1 \end{cases}

Therefore, 2016 z = 2016 2016|z| = \boxed{2016}

Tapas, I have edited your problem.

Chew-Seong Cheong - 4 years, 8 months ago

Log in to reply

Sorry and thanks.

Good solution!

Tapas Mazumdar - 4 years, 8 months ago
Viki Zeta
Sep 23, 2016

R ( z ) = i z 3 + z 2 z + i = 0 R ( i ) = i ( i 3 ) + i 2 i + i = 1 1 + 0 = 0 Therefore, z=i is a solution to R(z). On either - dividing R(z) by (z-i) or using synthetic division, you get the quotient as Q ( z ) = i z 2 + 0 z 2 1 i z 2 1 So other zeros would be, factorizing, Q(z) Q ( z ) = 0 i z 2 1 = 0 z = ± 1 i Therefore for all 3 values of ’z’, we get the absolute as z = i = 0 + 1 i z = 0 2 + 1 2 = 1 z = + 1 i = i i = 0 + i i z = 0 2 + ( i i ) 2 = 1 z = i i z = 1 R(z) = iz^3+z^2-z+i=0\\ R(i) = i(i^3) + i^2 - i + i = 1 - 1 + 0 = 0 \\ \text{Therefore, z=i is a solution to R(z).} \\ \text{On either - dividing R(z) by (z-i) or using synthetic division, you get the quotient as} \\ Q(z) = iz^2 + 0z^2 - 1 iz^2 - 1\\ \text{So other zeros would be, factorizing, Q(z)} \\ Q(z) = 0 \\ iz^2 - 1 = 0 \\ z = \pm\sqrt[]{\dfrac{1}{i}} \\ \text{Therefore for all 3 values of 'z', we get the absolute as} \\ \large z = i = 0 + 1i \\ |z| = \sqrt[]{0^2 + 1^2} = 1 \\ \large z = + \sqrt[]{\dfrac{1}{i}} = i\sqrt[]{i} = 0 + i\sqrt[]{i}\\ |z| = \sqrt[]{0^2 + (i\sqrt[]{i})^2} = 1 \\ \large z = -i\sqrt[]{i} \\ |z| = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...