Complex numbers (showing simplicity)

Algebra Level 3

If the complex number z = x + i y z=x+iy satisfy the equation amp ( z 1 ) = amp ( z + 3 ) \text{amp}(z-1)=\text{amp}(z+3) , then the value of ( x 1 ) : y (x-1):y is equal to?

Clarification: amp ( z ) \text{amp}(z) means amplitude or argument of the complex number z z .

1:3 does not exist 2:1 -1:3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anandhu Raj
Feb 12, 2015

Let z = x + i y z=x+iy

Given a m p ( z 1 ) = a m p ( z + 3 ) amp(z-1)=amp(z+3) a m p ( ( x 1 ) + i y ) = a m p ( ( x + 3 ) + i y ) \Longrightarrow amp((x-1)+iy)=amp((x+3)+iy)

a m p ( ( x 1 ) + i y ) a m p ( ( x + 3 ) + i y ) = 0 \Longrightarrow amp((x-1)+iy)-amp((x+3)+iy)=0

t a n 1 y x 1 t a n 1 y x + 3 = 0 \Longrightarrow { tan }^{ -1 }\left| \frac { y }{ x-1 } \right| -{ tan }^{ -1 }\left| \frac { y }{ x+3 } \right| =0

t a n 1 ( y x 1 y x + 3 1 + y 2 ( x 1 ) ( x + 3 ) ) = 0 \Longrightarrow { tan }^{ -1 }\left( \frac { \frac { y }{ x-1 } -\frac { y }{ x+3 } }{ 1+\frac { { y }^{ 2 } }{ (x-1)(x+3) } } \right) =0

Solving gives,

y = 0 y=0

Thus when we take ratio ( x 1 ) : y (x-1):y \longrightarrow ( x 1 ) : 0 (x-1):0 ,which is not defined.

But the difference of the inverse tangents can also be equal to pi

Abhishek Ranjan - 6 years, 3 months ago

Amplitude is not always t a n 1 ( y x tan^-1(\frac{y}{x} but π ± t a n 1 ( y x \pi\pm tan^-1(\frac{y}{x} or ± t a n 1 ( y x \pm tan^-1(\frac{y}{x} for 3,2 and 1,4 quadrant respectively.

Vishal Yadav - 4 years, 2 months ago

Log in to reply

Its ok by checking one case, that is their differnece is 0. Its not a multicorrect question. So no tension

Md Zuhair - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...