Complicated Algebraic Expression

Algebra Level 4

Let x = 2013 x=2013 , y = 140542 y=140542 , z = 142555 z=-142555 . Find ( x y z + y z x + z x y ) ( x y z + y z x + z x y ) . \left( \frac{x-y}{z} + \frac{y-z}{x} + \frac{z-x}{y} \right) \cdot \left( \frac{x}{y-z} + \frac{y}{z-x} + \frac{z}{x-y} \right).


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

David Gs
May 20, 2014

Let a = x y z a=\frac{x-y}{z} , b = y z x b=\frac{y-z}{x} , c = z x y c=\frac{z-x}{y} . Note that x + y + z = 0 x+y+z=0 , so 1 + a = 2 y z 1+a = -\frac{2y}{z} and 1 a = 2 x z 1-a=-\frac{2x}{z} . Similarly 1 + b = 2 z x 1+b=-\frac{2z}{x} , 1 b = 2 y x 1-b=-\frac{2y}{x} , 1 + c = 2 x y 1+c=-\frac{2x}{y} and 1 c = 2 z y 1-c=-\frac{2z}{y} . It follows that ( 1 + a ) ( 1 + b ) ( 1 + c ) = 1 + a + b + c + a b + a c + b c + a b c = 8 (1 + a)(1 + b)(1 + c) = 1+a+b+c+ab+ac+bc+abc= -8 and ( 1 a ) ( 1 b ) ( 1 c ) = 1 a b c + a b + a c + b c a b c = 8. (1 - a)(1 - b)(1 - c) = 1-a-b-c+ab+ac+bc-abc= -8. From this we can see that a + b + c + a b c = 0 a + b + c + abc = 0 and a b + a c + b c = 9 ab+ac+bc=-9 . Now we compute the desired expression ( a + b + c ) ( 1 a + 1 b + 1 c ) = a b c ( 1 a + 1 b + 1 c ) = ( a b + a c + b c ) = 9. (a + b + c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) = -abc \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) = -(ab + ac + bc) = 9.

This is a very clever solution, the shortest of all submitted. Most of the other correct solutions used various symmetric identities. It is also possible to rewrite z z as x y -x-y and do a brute force simplification, but it is, clearly, much longer.

Calvin Lin Staff - 7 years ago

Consider 3 constants a a , b b \& c c such that a + b + c = 0 a+b+c=0 .

Now,

a b c + b c a + c a b \frac{a-b}{c} + \frac{b-c}{a} + \frac{c-a}{b}

= ( c a ) + ( b c ) c + b c a + c a b = -\frac{(c-a)+(b-c)}{c} + \frac{b-c}{a} + \frac{c-a}{b}

= c a b c a c + b c a b c c = \frac{c-a}{b}-\frac{c-a}{c} + \frac{b-c}{a}-\frac{b-c}{c}

= ( c a ) [ c b b c ] + ( b c ) [ c a a c ] = (c-a) [\frac{c-b}{bc}] + (b-c) [\frac{c-a}{ac}]

= ( c a ) ( b c ) [ 1 a c 1 b c ] = (c-a)(b-c)[\frac{1}{ac}-\frac{1}{bc}]

= ( b a ) ( c b ) ( a c ) a b c = \frac{(b-a)(c-b)(a-c)}{abc} (*)

In the original problem,it is easily noticed that x + y + z = 0 x+y+z=0 .

Again, ( x y ) + ( y z ) + ( z x ) = 0 (x-y)+(y-z)+(z-x)=0 .

So in (*), putting a = x a=x , b = y b=y , c = z c=z , we get the premultiplier, which is equal to:

( y x ) ( z y ) ( x z ) x y z \frac{(y-x)(z-y)(x-z)}{xyz} .

Again, putting a = ( x y ) , b = ( y z ) , c = ( z x ) a=(x-y) , b=(y-z), c=(z-x) \& doing some simple algebraic manipulation,we prove the compatibilty of this set in (*), as in:

Consider the 2nd term, it is:

b c a = ( y z ) ( z x ) x y = x + y + z 3 z x y = 3 z x y \frac{b-c}{a} = \frac{(y-z)-(z-x)}{x-y} = \frac{x+y+z-3z}{x-y} = -3\frac{z}{x-y} [as x + y + z = 0 x+y+z=0 ], which corresponds to 3rd term in the post multiplier.

[The rest simplification is similar for other two terms]

Thus after taking common -3 from this expression we get postmultiplier, which is equal to (after same manipulation with the ( b a ) , ( c b ) , ( a c ) (b-a), (c-b), (a-c) terms):

= 3 × 3 x y z ( y x ) ( z y ) ( x z ) = -3 \times -3\frac{xyz}{(y-x)(z-y)(x-z)} .

Hence after multiplying the two expressions, what remains is a 9.

possibly feature

Calvin Lin Staff - 7 years ago
Lab Bhattacharjee
May 20, 2014

$$\frac{(x-y)}z+\frac{(y-z)}x+\frac{(z-x)}y=\frac{(x-y)}z+\frac{(y-z)}x-\frac{x-y+y-z}y$$ $$=(x-y)\left(\frac1z-\frac1y\right)+(y-z)\left(\frac1x-\frac1y\right)$$

$$=\frac{(x-y)(y-z)}{yz}-\frac{(y-z)(x-y)}{xy}=\frac{(x-y)(y-z)(x-z)}{xyz}$$

Now, $$\frac{(x-y)(y-z)(x-z)}{xyz}\cdot \frac x{y-z}=\frac{(x-y)(x-z)}{yz}=\frac{x^2+yz-x(y+z)}{yz}$$

As $$x+y+z=0, x^2+yz-x(y+z)=x^2+yz-x(-x)=2x^2+yz$$

$$\implies \frac{(x-y)(x-z)}{yz}=\frac{x^2+yz-x(y+z)}{yz}=2\frac{x^3}{xyz}+1$$

So, the required sum will be$$\frac2{xyz}(x^3+y^3+z^3)+1+1+1 $$

As $$x+y+z=0, x^3+y^3+z^3=(x+y)^3+z^3-3xy(x+y)=(-z)^3+z^3-3xy(-z)=3xyz$$

So, the required sum will be$$2\cdot3+3=9 $$

Tejas Kasetty
May 20, 2014

Let w = x y w=x-y , u = y z u=y-z , v = z x . . . v=z-x ... (1) . Then,

( x y z + y z x + z x y ) ( x z y + y z x + z x y ) = ( w z + u x + v y ) ( x u + y v + z w ) (\frac {x-y}{z} + \frac {y-z}{x} + \frac{z-x}{y}) \cdot (\frac {x}{z-y} + \frac{y}{z-x} + \frac {z}{x-y})= (\frac {w}{z} + \frac {u}{x} + \frac{v}{y}) \cdot (\frac {x}{u} + \frac{y}{v} + \frac {z}{w})

On expanding, ( w z + u x + v y ) ( x u + y v + z w ) (\frac {w}{z} + \frac {u}{x} + \frac{v}{y}) \cdot (\frac {x}{u} + \frac{y}{v} + \frac {z}{w})

= 1 + 1 + 1 + z w ( u x + v y ) + y v ( w z + u x ) + x u ( w z + v y ) =1+1+1 +\frac {z}{w} \cdot ( \frac {u}{x} + \frac{v}{y} ) + \frac{y}{v} \cdot (\frac {w}{z} + \frac {u}{x} ) + \frac {x}{u} \cdot (\frac {w}{z} + \frac{v}{y})

= 3 + z x y ( y z x + z x y ) + y z x ( x y z + y z x ) + x y z ( x y z + z x y ) =3 + \frac {z}{x-y} \cdot ( \frac {y-z}{x} + \frac{z-x}{y} ) + \frac{y}{z-x} \cdot (\frac {x-y}{z} + \frac {y-z}{x} ) + \frac {x}{y-z} \cdot (\frac {x-y}{z} + \frac{z-x}{y}) [Substituted for w , v w,v and u u from ... (1) ]

= 3 + z x y ( x z y z + y 2 x 2 y x ) + y z x ( y z x y + x 2 z 2 x z ) + x y z ( x y x z + z 2 y 2 z y ) =3 + \frac {z}{x-y} \cdot ( \frac {xz - yz + y^2 - x^2 }{yx} ) + \frac{y}{z-x} \cdot (\frac {yz-xy + x^2-z^2}{xz} ) + \frac {x}{y-z} \cdot (\frac {xy-xz + z^2 - y^2}{zy})

On factorizing, 3 + z x y ( x z y z + y 2 x 2 y x ) + y z x ( y z x y + x 2 z 2 x z ) + x y z ( x y x z + z 2 y 2 z y ) 3 + \frac {z}{x-y} \cdot ( \frac {xz - yz + y^2 - x^2 }{yx} ) + \frac{y}{z-x} \cdot (\frac {yz-xy + x^2-z^2}{xz} ) + \frac {x}{y-z} \cdot (\frac {xy-xz + z^2 - y^2}{zy})

= 3 + z x y ( ( x y ) ( z ( x + y ) ) y x ) + y z x ( ( z x ) ( y ( z + x ) ) x z ) + x y z ( ( y z ) ( x ( z + y ) ) z y ) =3 + \frac {z}{x-y} \cdot ( \frac {(x - y)(z - (x+y))}{yx} ) + \frac{y}{z-x} \cdot (\frac {(z-x)( y-(z+x))}{xz} ) + \frac {x}{y-z} \cdot (\frac {(y-z)(x - (z+y))}{zy})

= 3 + z ( z ( x + y ) y x ) + y ( y ( z + x ) x z ) + x ( x ( z + y ) z y ) =3 + z \cdot ( \frac {z - (x+y)}{yx}) + y \cdot (\frac { y-(z+x)}{xz} ) + x \cdot (\frac {x - (z+y)}{zy}) .... (2) .

Now, its given that x = 2013 , y = 140542 , z = 142555 x=2013, y=140542, z=-142555 .

On simple inspection it can be observed that , ( x + y ) = ( 2013 + 140542 ) = ( 142555 ) = z -(x+y)= -(2013 + 140542) = -(142555)=z

z = ( x + y ) \Rightarrow z= -(x+y) .... (3) .

Similarly, ( z + x ) = y -(z+x)=y , ( z + y ) = x -(z+y) = x .... (4) . and x + y + z = 2013 + 140542 142555 = 0 x+y+z=2013 + 140542-142555=0 ... (5) .

Substituting, using (3) and (4) in (2) .

3 + z ( z ( x + y ) y x ) + y ( y ( z + x ) x z ) + x ( x ( z + y ) z y ) 3 + z \cdot ( \frac {z - (x+y)}{yx}) + y \cdot (\frac { y-(z+x)}{xz} ) + x \cdot (\frac {x - (z+y)}{zy})

= 3 + z ( z + z y x ) + y ( y + y x z ) + x ( x + x z y ) =3 + z \cdot ( \frac {z +z}{yx}) + y \cdot (\frac { y+y}{xz} ) + x \cdot (\frac {x+x}{zy})

= 3 + 2 z 2 y x + 2 y 2 x z + 2 x 2 z y =3 + \frac {2z^2}{yx} + \frac { 2y^2}{xz} + \frac {2x^2}{zy} [Taking out 2 2 as common]

= 3 + 2 ( z 2 y x + y 2 x z + x 2 z y ) =3 + 2(\frac {z^2}{yx} + \frac {y^2}{xz} + \frac {x^2}{zy}) [On factorizing the denominator]

= 3 + 2 ( z 3 x y z + y 3 x y z + x 3 x y z ) =3 + 2(\frac {z^3}{xyz} + \frac {y^3}{xyz} + \frac {x^3}{xyz}) = 3 + 2 ( z 3 + y 3 + x 3 x y z ) =3 + 2(\frac {z^3+y^3+x^3}{xyz}) ... (6)

Since, x + y + z = 0 x+y+z=0 [from (5) ]

, x 3 + y 3 + z 3 = 3 x y z x^3+y^3+z^3=3xyz [Standard identity]

Substituting it in equation (6) ,

3 + 2 ( z 3 + y 3 + x 3 x y z ) = 3 + 2 ( 3 x y z x y z ) 3 + 2(\frac {z^3+y^3+x^3}{xyz})=3 + 2(\frac {3xyz}{xyz}) = 3 + 2 ( 3 ) = 9 =3+2(3)= 9 .

( x y z + z y x + z x y ) ( x z y + y z x + z x y ) = 9 \therefore (\frac {x-y}{z} + \frac {z-y}{x} + \frac{z-x}{y}) \cdot (\frac {x}{z-y} + \frac{y}{z-x} + \frac {z}{x-y}) = \boxed 9

Christopher Hamer
May 20, 2014

First notice that x + y = z x+y=-z and eliminate z z . This gives, for the left hand side of the product

y x x + y + 2 y + x x y + 2 x y \frac{y-x}{x+y}+\frac{2y+x}{x}-\frac{y+2x}{y}

Carry out the addition

x y ( y x ) + y ( x + y ) ( 2 y + x ) y ( x + y ) ( y + 2 x ) x y ( x + y ) \frac{xy(y-x)+y(x+y)(2y+x)-y(x+y)(y+2x)}{xy(x+y)}

Careful expansion and collecting of terms of the numerator gives

2 y 3 + 3 y 2 x 3 y x 2 + 2 y 3 2y^3+3y^2x-3yx^2+2y^3

Let's call this expression f ( x , y ) f(x,y) and looking to factorise we notice that f ( y , y ) = 0 f(y,y)=0 so by the factor theorem ( y x ) (y-x) is a factor of f ( x , y ) f(x,y) . Now we can use either polynomial long divison or comparison of coefficients to find the other factor, which is 2 y 2 + 5 y x + 2 x 2 2y^2+5yx+2x^2 this factorises to ( 2 x + y ) ( x + 2 y ) (2x+y)(x+2y) .

Similar careful algebraic manipulation of the right hand side of the product with easier factorisation means that the whole product can be written

( ( y x ) ( 2 y + x ) ( y + x ) x y ( x + y ) ) ( 9 x y ( x + y ) ( y x ) ( 2 y + x ) ( 2 x + y ) ) (\frac{(y-x)(2y+x)(y+x)}{xy(x+y)})\cdot(\frac{9xy(x+y)}{(y-x)(2y+x)(2x+y)})

Cancelling down we are left with 9 9 .

The solution is sketchy for a good reason: it is, essentially, brute force algebra. The "key technique" is very telling.

Calvin Lin Staff - 7 years ago
Calvin Lin Staff
May 13, 2014

Solution 1: The numbers x , y , z x,y,z in the statement of the problem have the property that x + y + z = 0 x+y+z=0 . We will show that whenever this property holds, one has ( x y z + y z x + z x y ) ( x y z + y z x + z x y ) = 9 , \left( \frac{x-y}{z} + \frac{y-z}{x} + \frac{z-x}{y} \right) \cdot \left( \frac{x}{y-z} + \frac{y}{z-x} + \frac{z}{x-y} \right) = 9, so that the answer to the given problem is 9 9 .

We first calculate ( x y z + y z x + z x y ) x y z = ( x y ) x z ( y z ) + 1 + ( z x ) x y ( y z ) = 1 + x y ( x y ) + x z ( z x ) y z ( y z ) = 1 + x 2 y x y 2 x 2 z + x z 2 y z ( y z ) = 1 + x 2 ( y z ) x ( y 2 z 2 ) y z ( y z ) = 1 + x 2 x ( y + z ) y z = 1 + 2 x 2 y z , \begin{aligned} \left( \frac{x-y}{z} + \frac{y-z}{x} + \frac{z-x}{y} \right) \cdot \frac{x}{y-z} &=& \frac{(x-y)x}{z(y-z)}+1+\frac{(z-x)x}{y(y-z)} \\ &=& 1 + \frac{xy(x-y)+xz(z-x)}{yz(y-z)} \\ &=& 1 + \frac{x^2y-xy^2-x^2z+xz^2}{yz(y-z)} \\ &=& 1 + \frac{x^2(y-z)-x(y^2-z^2)}{yz(y-z)} \\ &=& 1 + \frac{x^2-x(y+z)}{yz} \\ &=& 1 + \frac{2x^2}{yz}, \end{aligned} where the last step is the only one where we used the assumption that y + z = x y+z=-x .

Making a cyclic shift of the variables x , y , z x,y,z (i.e., x x is replaced with y y , y y is replaced with z z and z z is replaced with x x ), we obtain the identity ( x y z + y z x + z x y ) y z x = 1 + 2 y 2 x z \left( \frac{x-y}{z} + \frac{y-z}{x} + \frac{z-x}{y} \right) \cdot \frac{y}{z-x} = 1+\frac{2y^2}{xz} (still under the assumption x + y + z = 0 x+y+z=0 ). Making one more cyclic shift yields ( x y z + y z x + z x y ) z x y = 1 + 2 z 2 x y . \left( \frac{x-y}{z} + \frac{y-z}{x} + \frac{z-x}{y} \right) \cdot \frac{z}{x-y} = 1+\frac{2z^2}{xy}. Summing the last three identities yields ( x y z + y z x + z x y ) ( x y z + y z x + z x y ) = 3 + 2 ( x 2 y z + y 2 x z + z 2 x y ) . \left( \frac{x-y}{z} + \frac{y-z}{x} + \frac{z-x}{y} \right) \cdot \left( \frac{x}{y-z} + \frac{y}{z-x} + \frac{z}{x-y} \right) = 3+2\cdot\left(\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}\right). Finally, we compute x 2 y z + y 2 x z + z 2 x y = x 3 + y 3 + z 3 x y z . \frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy} = \frac{x^3+y^3+z^3}{xyz}. Since z = x y z=-x-y , we have x 3 + y 3 + z 3 = x 3 + y 3 ( x + y ) 3 = 3 x 2 y 3 x y 2 = 3 x y ( x + y ) = 3 x y z , x^3+y^3+z^3=x^3+y^3-(x+y)^3=-3x^2y-3xy^2=-3xy(x+y)=3xyz, which implies that x 3 + y 3 + z 3 x y z = 3 \frac{x^3+y^3+z^3}{xyz}=3 , and finally, ( x y z + y z x + z x y ) ( x y z + y z x + z x y ) = 3 + 2 3 = 9 , \left( \frac{x-y}{z} + \frac{y-z}{x} + \frac{z-x}{y} \right) \cdot \left( \frac{x}{y-z} + \frac{y}{z-x} + \frac{z}{x-y} \right) = 3+2\cdot 3=9, as claimed.

Solution 2: Observe that ( x y ) y x + ( y z ) y z + ( z x ) z x = ( x y ) ( y z ) ( z x ) (x-y)yx + (y-z)yz+(z-x)zx = - (x-y)(y-z)(z-x) , where the factorization can be obtained by using the remainder factor theorem and observing that R ( x , x , z ) = 0 R(x, -x, z ) = 0 . Hence, the first term is equal to

( x y ) ( y z ) ( z x ) x y z . \frac{ - (x-y)(y-z)(z-x) } { xyz}.

The second term can be simplified into

( x + y + z ) ( x 2 + y 2 + z 2 2 x y 2 y z 2 x z ) 9 x y z ( x y ) ( y z ) ( z x ) \frac { - (x+y+z) ( x^2 + y^2 + z^2 - 2xy - 2yz - 2 xz) - 9 xyz } { (x-y)(y-z)(z-x) }

Since we have that x + y + z = 0 x+y+z = 0 , we can conclude that the product of these 2 terms is simply 9.

Andrei Dos Santos
May 20, 2014

Simplifying the product , I've find 9 .

Essentially, no solution is given. Could have been just plugging in and using a calculator.

Calvin Lin Staff - 7 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...