Complicated Expression

Level pending

Let x 1 x_1 and x 2 x_2 be the roots of the equation x 2 3 x + 1 = 0 x^2-3x+1=0 . The value of:

x 1 x 2 + x 2 x 1 \frac{x_1}{\sqrt{x_2}}+\frac{x_2}{\sqrt{x_1}} can be written as a b a\sqrt{b} where a a and b b are coprime positive integers.What is a + b a+b ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x 2 3 x + 1 = 0 , x 1 x 2 x^2-3x+1=0, \; x_1 \geq x_2 Bhaskara’s Formula \text{Bhaskara's Formula} x 1 = 3 + 5 2 x 2 = 3 5 2 x_1 = \dfrac{3 + \sqrt{5}}{2} \; \; \; \; \; x_2 = \dfrac{3 - \sqrt{5}}{2} Golden Ratio Identity \text{Golden Ratio Identity} x 1 = 5 + 1 2 x 2 = 5 1 2 \sqrt{x_1} = \dfrac{\sqrt{5} + 1}{2} \; \; \; \; \; \sqrt{x_2} = \dfrac{\sqrt{5} - 1}{2} a b = x 1 x 2 + x 2 x 1 a b ( x 1 x 1 x 2 + x 2 ) ( x 1 + x 2 ) x 1 x 2 a\sqrt{b} = \dfrac{x_1}{\sqrt{x_2}} + \dfrac{x_2}{\sqrt{x_1}} \Rightarrow a\sqrt{b} \dfrac{(x_1 - \sqrt{x_1 x_2} + x_2)(\sqrt{x_1} + \sqrt{x_2})}{\sqrt{x_1 x_2}} Vieta’s Formulae \text{Vieta's Formulae} a b = ( 3 1 ) 5 1 a\sqrt{b} = \dfrac{(3 - 1) \sqrt{5}}{1} a b = 2 5 a\sqrt{b} = 2\sqrt{5} a + b = 7. \boxed{a+b=7.}

Guilherme, here is another solution for those who are not familiar with some of your methods:

If we square the given expression,we will obtain:

( x 1 x 2 + x 2 x 1 ) 2 = x 1 2 x 2 + x 2 2 x 1 + 2 x 1 x 2 x 1 x 2 = x 1 3 + x 2 3 x 1 x 2 + 2 x 1 x 2 x 1 x 2 (\frac{x_1}{\sqrt{x_2}}+\frac{x_2}{\sqrt{x_1}})^2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}+\frac{2x_1x_2}{\sqrt{x_1x_2}}=\frac{x_1^3+x_2^3}{x_1x_2}+\frac{2x_1x_2}{\sqrt{x_1x_2}} .Observe:

x 1 3 + x 2 3 = ( x 1 + x 2 ) 3 3 x 1 x 2 ( x 1 + x 2 ) x_1^3+x_2^3=(x_1+x_2)^3-3x_1x_2(x_1+x_2) .From vietas formulas we have :

x 1 + x 2 = 3 x_1+x_2=3 ( 1 ) (1)

x 1 x 2 = 1 x_1x_2=1 ( 2 ) (2)

Therefore x 1 3 + x 2 3 = 18 x_1^3+x_2^3=18 and the expression is equal to :

18 1 + 2 1 1 \frac{18}{1}+\frac{2*1}{\sqrt{1}} and by making the operations we obtain :

( x 1 x 2 + x 2 x 1 ) 2 = 20 (\frac{x_1}{\sqrt{x_2}}+\frac{x_2}{\sqrt{x_1}})^2=20 where :

x 1 x 2 + x 2 x 1 = 20 = 2 5 \frac{x_1}{\sqrt{x_2}}+\frac{x_2}{\sqrt{x_1}}=\sqrt{20}=2\sqrt{5} .Thus, a = 2 a=2 and b = 5 b=5 and a + b = 7 \boxed{a+b=7}

Lorenc Bushi - 7 years, 5 months ago

Log in to reply

Way better than my solution. I got the easy job because the roots are powers oh φ \varphi .

Guilherme Dela Corte - 7 years, 5 months ago

Guilherme ,what if we had a similar problem to this one but with different equation ,would you still be able to use the Golden Ratio identity ?

Lorenc Bushi - 7 years, 5 months ago

Log in to reply

I would not. This only works because x 1 x_1 and x 2 x_2 are powers of φ \varphi , where φ 2 = φ + 1 \varphi^2 = \varphi + 1 .

Guilherme Dela Corte - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...