Complicated Fraction?

Algebra Level 1

Evaluate ( 17 7 2 17 5 2 ) ( 17 3 2 17 1 2 ) ( 16 9 2 16 7 2 ) 176 × 172 × 168 . \frac{(177 ^2-175 ^2)(173 ^2-171 ^2)(169 ^2-167 ^2)}{176 \times 172 \times 168}.

63 63 62 62 61 61 64 64

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Benjamin Kan
Mar 20, 2014

We first see that 17 7 2 17 5 2 = 2 ( 177 + 175 ) 177^2-175^2=2(177+175) . 2 ( 177 + 175 ) = 2 ( 2 176 ) 2(177+175)=2(2\cdot176) . Therefore, if we just look at 17 7 2 17 5 2 176 \frac{177^2-175^2}{176} , we have a quotient of 4 4 . By doing the same to 17 3 2 17 1 2 172 \frac{173^2-171^2}{172} and 16 9 2 16 7 2 168 \frac{169^2-167^2}{168} , we have a product of 4 4 4 = 64 4\cdot4\cdot4=\boxed{64} as our answer.

We know a 2 b 2 = ( a + b ) ( a b ) a^{2} - b^{2} = (a+b) (a-b) Therefore, ( 17 7 2 17 5 2 ) ( 17 3 2 17 1 2 ) ( 16 9 2 16 7 2 ) 176 × 172 × 168 . \frac{(177 ^2-175 ^2)(173 ^2-171 ^2)(169 ^2-167 ^2)}{176 \times 172 \times 168}. ( 177 + 175 ) ( 177 175 ) ( 173 + 171 ) ( 173 171 ) ( 169 + 167 ) ( 169 167 ) 176 × 172 × 168 . \frac{(177 +175 )(177-175)(173+171)(173 -171)(169+167 )(169-167)}{176 \times 172 \times 168}. = ( 2 × 176 ) ( 2 ) ( 2 × 172 ) ( 2 ) ( 2 × 168 ) ( 2 ) 176 × 172 × 168 . =\frac{(2 \times 176 )(2)(2 \times 172)(2)(2 \times 168 )(2)}{176 \times 172 \times 168}. = 2 6 =2^{6} = 64 \boxed{=64}

Anubhav Sharma
Apr 4, 2014

Don't worry by looking at question's title. It's not complicated.

First, separate all the terms of the numerator and solve each and finally combine them all.

First term

\­( 177^{2} \­) - \­( 175^{2} \­)

The average of the two terms 177 and 175 is 176. It can also be expressed like this.

{\­( (176 + 1)^{2} \­) - \­( (176 - 1)^{2} \­)}

By using the formula of \­( a^{2} \­) - \­( b^{2} \­)

Please note that here our a is (176 + 1) and our b is (176 - 1)

So,

( 176 + 1 + ( 176 -1)) (176 + 1 -(176 - 1))

= ( 176 + 1 + 176 - 1) (176 + 1 - 176 + 1)

=(176 + 176) ( 1+ 1)

=( 2 * 176) * 2

= 176 * 2 * 2

Second term

\­( 173^{2} \­) - \­( 171^{2} \­)

The average of the two terms 173 and 171 is 172. It can also be expressed like this.

{\­( (172 + 1)^{2} \­) - \­( (172 - 1)^{2} \­)}

By using the formula of \­( a^{2} \­) - \­( b^{2} \­)

Please note that here our a is (172 + 1) and our b is (172 - 1)

So,

( 172 + 1 + ( 172 -1)) (172 + 1 -(172 - 1))

= ( 172 + 1 + 172 - 1) (172 + 1 - 172 + 1)

=(172 + 172) ( 1+ 1)

=( 2 * 172) * 2

= 172 * 2 * 2

* Third term *

\­( 169^{2} \­) - \­( 167^{2} \­)

The average of the two terms 169 and 167 is 168. It can also be expressed like this.

{\­( (168 + 1)^{2} \­) - \­( (168 - 1)^{2} \­)}

By using the formula of \­( a^{2} \­) - \­( b^{2} \­)

Please note that here our a is (168 + 1) and our b is (168 - 1)

So,

( 168 + 1 + ( 168 -1)) (168 + 1 -(168 - 1))

= ( 168 + 1 + 168 - 1) (168 + 1 - 168 + 1)

=(168 + 168) ( 1+ 1)

=( 2 * 168) * 2

= 168 * 2 * 2

Now, combining all the terms.

(\­( 177^{2} \­) - \­( 175^{2} \­))(\­( 173^{2} \­) - \­( 171^{2} \­))(\­( 169^{2} \­) - \­( 167^{2} \­)) divided by 176 * 172 * 168

= 2 * 2 * 176 * 2 * 2 * 172 * 2 * 2* 168 divided by 176 * 172 * 168

= 2 * 2 * 2 * 2 * 2 * 2

= 64

Hence, our final answer is 64.

Aquilino Madeira
Jul 28, 2015

( 177 2 175 2 ) ( 173 2 171 2 ) ( 169 2 167 2 ) 176 × 172 × 168 = a = 176 . . . a = 172 . . . a = 168 ( a + 1 ) 2 ( a 1 ) 2 a = 4 ( 177 2 175 2 ) ( 173 2 171 2 ) ( 169 2 167 2 ) 176 × 172 × 168 = 4 × 4 × 4 = 64 \begin{array}{l} \frac{{\left( {{{177}^2} - {{175}^2}} \right)\left( {{{173}^2} - {{171}^2}} \right)\left( {{{169}^2} - {{167}^2}} \right)}}{{176 \times 172 \times 168}} = \\ \\ a = 176\quad ...\quad a = 172\quad ...\quad a = 168\\ \frac{{{{\left( {a + 1} \right)}^2} - {{\left( {a - 1} \right)}^2}}}{a} = 4\\ \\ \frac{{\left( {{{177}^2} - {{175}^2}} \right)\left( {{{173}^2} - {{171}^2}} \right)\left( {{{169}^2} - {{167}^2}} \right)}}{{176 \times 172 \times 168}} = 4 \times 4 \times 4 = 64 \end{array}

Aaron Warren
May 4, 2015

If we factor the expression into three fractions in which the numerator is the difference of perfect squares and the denominator is the mean of the bases of those squares:

(a^2-b^2)/((a+b)/2)

then ((a+b)(a-b))/((a+b)/2)

simplifies to 2*(a-b)

and since in each case a - b = 2

each of the three fraction simplifies to 2 * 2

we now have (2 * 2)(2 * 2)(2 * 2)

or 2^6 = 64

See that all the multiples of the numerator are of the form ( n + 2 ) 2 n 2 (n+2)^2-n^2 Which simplifies to 4 n + 4 4n+4 So setting n = 175 , 171 a n d 167 n=175,171\;and\;167 ,we get 704 , 688 a n d 672 704,688\;and\,672 ,So: ( 17 7 2 17 5 2 ) ( 17 3 2 17 1 2 ) ( 16 9 2 16 7 2 ) 176 × 172 × 168 = 704 × 688 × 672 176 × 172 × 168 = 176 × 172 × 168 44 × 43 × 42 = 4 × 4 × 4 = 4 3 = 64 \frac{(177^2-175^2)(173^2-171^2)(169^2-167^2)}{176\times172\times168}=\frac{704\times688\times672}{176\times172\times168}=\frac{176\times172\times168}{44\times43\times42}=4\times4\times4=4^3=\boxed{64}

Krishna Garg
Apr 16, 2014

Looking to the denominators we find that are like (a2-b2)(c2-d2)(m2-n2) we can put them as (a+b)(a-b)(c+d)(c-d)(m+n)(m-n) ,substituting given values in numerators and denominators,we get 2X2X2X2X2X2 =64 Ans K.K.GARG,India

Rohit Mitra
Apr 5, 2014

don't blindly multiply--use (a^2-b^2)=a+b*a-b

i done by the rule

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...