Complicated Infinite Sum

n = 1 d ( n ) + m = 1 v 2 ( n ) ( m 3 ) d ( n 2 m ) n \large \displaystyle\sum_{n = 1}^{\infty}\frac{d(n) + \displaystyle\sum_{m = 1}^{v_2(n)}(m - 3)d\left(\frac{n}{2^m}\right)}{n}

Let S S be the value of the summation above, where d ( n ) d(n) is the number of divisors of n n and v 2 ( n ) v_2(n) be the exponent of 2 2 in the prime factorization of n n . If S = ( ln m ) n S = (\ln m)^n for positive integers m m and n n , find 1000 n + m 1000n + m .

Source: OMO


The answer is 2004.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zi Song Yeoh
Aug 1, 2015

Let f ( s ) = n = 1 d ( n ) + m = 1 v 2 ( n ) ( m 3 ) d ( n 2 m ) n s f(s) = \displaystyle\sum_{n = 1}^{\infty}\frac{d(n) + \displaystyle\sum_{m = 1}^{v_2(n)}(m - 3)d\left(\frac{n}{2^m}\right)}{n^s} . Let z ( s ) = n = 1 1 n s z(s) = \displaystyle\sum_{n = 1}^{\infty}\frac{1}{n^s} . Then,

We claim that f ( s ) = z ( s ) 2 ( 1 1 2 s 1 4 s 1 8 s . . . ) 2 f(s) = z(s)^2\left(1 - \frac{1}{2^s} - \frac{1}{4^s} - \frac{1}{8^s} - ... \right)^2 , which by the infinite geometric series formula gives f ( s ) = z ( s ) 2 ( 2 s 2 2 s 1 ) f(s) = z(s)^2\left(\frac{2^s - 2}{2^s - 1}\right) .

Indeed, z ( s ) 2 = n = 1 d ( n ) n s z(s)^2 = \displaystyle\sum_{n = 1}^{\infty}\frac{d(n)}{n^s} , because the value 1 n s \frac{1}{n^s} appears exactly d ( n ) d(n) times in the sum.

Also, ( 1 1 2 s 1 4 s 1 8 s . . . ) 2 = 1 + i = 2 i 1 ( 2 i ) s 2 i = 1 1 ( 2 i ) s = 1 + i = 1 i 3 ( 2 i ) s \left(1 - \frac{1}{2^s} - \frac{1}{4^s} - \frac{1}{8^s} - ... \right)^2 = 1 + \displaystyle\sum_{i = 2}^{\infty}\frac{i - 1}{(2^i)^s} - 2\displaystyle\sum_{i = 1}^{\infty}\frac{1}{(2^i)^s} = 1 + \displaystyle\sum_{i = 1}^{\infty}\frac{i - 3}{(2^i)^s} . Thus, we need to prove that f ( s ) = n = 1 d ( n ) n s + n = 1 d ( n ) n s i = 1 i 3 ( 2 i ) s f(s) = \displaystyle\sum_{n = 1}^{\infty}\frac{d(n)}{n^s} + \displaystyle\sum_{n = 1}^{\infty}\frac{d(n)}{n^s}\displaystyle\sum_{i = 1}^{\infty}\frac{i - 3}{(2^i)^s} .

Note that n = 1 d ( n ) n s i = 1 i 3 ( 2 i ) s = n = 1 m = 1 v 2 ( n ) ( m 3 ) d ( n 2 m ) n k \displaystyle\sum_{n = 1}^{\infty}\frac{d(n)}{n^s}\displaystyle\sum_{i = 1}^{\infty}\frac{i - 3}{(2^i)^s} = \displaystyle\sum_{n = 1}^{\infty}\frac{\displaystyle\sum_{m = 1}^{v_2(n)}(m - 3)d\left(\frac{n}{2^m}\right)}{n^k} (Split n = 2 r s n = 2^rs )

Thus, we have the desired conclusion.

So, we need to find lim s 1 z ( s ) 2 ( 2 s 2 ) \lim_{s \rightarrow 1}z(s)^2(2^s - 2) , since 2 s 1 = 1 2^s - 1 = 1 vanishes.

Note that it is well known (by Laurent Series) that lim s 1 ( z s 1 s 1 ) = γ \lim_{s \rightarrow 1}(z_s - \frac{1}{s - 1}) = \gamma , where γ \gamma is the Euler-Macheroni Constant. (see here , for instance). Thus, lim s 1 z ( s ) 2 ( 2 s 2 ) = lim s 1 ( 2 s 2 ) 2 ( s 1 ) 2 + 2 γ lim s 1 ( 2 s 2 ) 2 s 1 + γ 2 lim s 1 ( 2 s 2 ) 2 \lim_{s \rightarrow 1}z(s)^2(2^s - 2) = \lim_{s \rightarrow 1}\frac{(2^s - 2)^2}{(s - 1)^2} + 2\gamma\lim_{s \rightarrow 1}\frac{(2^s - 2)^2}{s - 1} + \gamma^2\lim_{s \rightarrow 1}(2^s - 2)^2 , and by L'Hopital Rule the last two terms vanish. It remains to find ( lim s 1 ( 2 s 2 ) 2 ( s 1 ) 2 ) 2 \left(\lim_{s \rightarrow 1}\frac{(2^s - 2)^2}{(s - 1)^2}\right)^2 .

By L'Hopital Rule again, lim s 1 2 s 2 s 1 = lim s 1 2 s ln 2 1 = 2 ln 2 = ln 4 \lim_{s \rightarrow 1}\frac{2^s - 2}{s - 1} = \lim_{s \rightarrow 1}\frac{2^s \ln 2}{1} = 2 \ln 2 = \ln 4 , so the desired sum is ( ln 4 ) 2 (\ln 4)^2 , which gives us 1000 n + m = 2 ( 1000 ) + 4 = 2004 1000n + m = 2(1000) + 4 = 2004 .

Great solution!

@Zi Song Yeoh Is this really an Olympiad problem?

Sualeh Asif - 5 years, 10 months ago

Log in to reply

It's from the Online Math Open, but this problem uses some calculus at the end. Finding f ( 2 ) f(2) might be more suitable for an olympiad problem, though.

Zi Song Yeoh - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...