Complicated Powers

Find the last digit of:

Q = 222 2 7777 + 333 3 7777 + 444 4 7777 \large Q=2222^{7777}+3333^{7777}+4444^{7777}


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

An Phạm
Feb 7, 2018

Notice that the last digit of a 4 k + 1 ( a , k N ) a^{4k+1} (a,k\in \mathbb{N}) is always the last digit of a a . Using this simple trick, we have:

Q = 222 2 7777 + 333 3 7777 + 444 4 7777 Q=2222^{7777}+3333^{7777}+4444^{7777}

Q = 222 2 4 × 1944 + 1 + 333 3 4 × 1944 + 1 + 444 4 4 × 1944 + 1 Q=2222^{4\times 1944+1}+3333^{4\times 1944+1}+4444^{4\times 1944+1}

Q = . . . 2 + . . . 3 + . . . 4 Q=...2+...3+...4

Q = . . . 9 Q=...9

So the last digit of Q Q is 9 \boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...