Complicated Sum

Algebra Level 3

A = k = 1 100 1 ( a = 0 1 2 a ) 2 + 1 b = 0 k + 1 ( 2 b + 1 ) + 1 c = 0 k 1 ( 2 c + 1 ) \large A=\sum_{k=1}^{100}\sqrt{\frac{1}{\left(\sum_{a=0}^{\infty}\frac{1}{2^{a}}\right)^2}+\frac{1}{\sum_{b=0}^{k+1}(2b+1)}+\frac{1}{\sum_{c=0}^{k-1}(2c+1)}}

Given the above, find 10302 A 10302A .


The answer is 530350.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chan Tin Ping
Oct 22, 2017

First, separate the summation. i)(geometric progression) a = 0 1 2 a = 2 \sum_{a=0}^{\infty}\frac{1}{2^{a}}=2 ii)(arithmetic progression) b = 0 k + 1 ( 2 b + 1 ) = ( k + 2 ) 2 \sum_{b=0}^{k+1}(2b+1)=(k+2)^2 iii) c = 0 k 1 ( 2 c + 1 ) = k 2 \sum_{c=0}^{k-1}(2c+1)=k^2

A = k = 1 100 1 2 2 + 1 ( k + 2 ) 2 + 1 k 2 = k = 1 100 ( 1 2 ) 2 + ( 1 k 1 k + 2 ) 2 + 2 k ( k + 2 ) = k = 1 100 ( 1 2 ) 2 + ( 1 k 1 k + 2 ) 2 + ( 1 k 1 k + 2 ) = k = 1 100 ( 1 2 + 1 k 1 k + 2 ) 2 = k = 1 100 1 2 + k = 1 100 ( 1 k 1 k + 2 ) = 50 + 1 + 1 2 1 101 1 102 \begin{aligned} A&=\sum_{k=1}^{100}\sqrt{\frac{1}{2^2}+\frac{1}{(k+2)^2}+\frac{1}{k^2}}\\ &=\sum_{k=1}^{100}\sqrt{(\frac{1}{2})^2+(\frac{1}{k}-\frac{1}{k+2})^2+\frac{2}{k(k+2)}}\\ &=\sum_{k=1}^{100}\sqrt{(\frac{1}{2})^2+(\frac{1}{k}-\frac{1}{k+2})^2+(\frac{1}{k}-\frac{1}{k+2})}\\ &=\sum_{k=1}^{100}\sqrt{(\frac{1}{2}+\frac{1}{k}-\frac{1}{k+2})^2}\\ &=\sum_{k=1}^{100}\frac{1}{2}+\sum_{k=1}^{100}(\frac{1}{k}-\frac{1}{k+2})\\ &=50+1+\frac{1}{2}-\frac{1}{101}-\frac{1}{102} \end{aligned} Hence, 10302 A = 530350 10302A=530350

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...