If sin ( cos x ) = a + i b , where a and b are real and i = − 1 is the imaginary unit , then
x = − s 1 π − c 2 s 1 π + i ( ln s 1 − ln ( t ± t s 1 − s 2 ) )
where t = ( c 1 s 2 + s 3 ) π + i s 1 ln ( − b + i a ± s 3 − ( a + i b ) s 1 ) with c 1 and c 2 being integers and s 1 , s 2 , and s 3 , positive integers less than 5 .
Find s 1 + s 2 + s 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
We need to use the complex expressions of sine and cosine .
Let cos ( x ) = u first so that we can deal with the sine on its own. sin ( u ) = a + b i ⟹ 2 i e i u − e − i u = a + b i ⟹ e i u − e − i u = 2 i ( a + b i ) = − 2 b + 2 a i ⟹ ( e i u ) 2 − 1 = ( − 2 b + 2 a i ) e i u ⟹ ( e i u ) 2 − ( − 2 b + 2 a i ) e i u − 1 = 0
We can use the quadratic formula here to find e i u : ( e i u ) 2 − ( − 2 b + 2 a i ) e i u − 1 = 0 ⟹ e i u = 2 ( 1 ) − ( − 2 b + 2 a i ) ± ( − 2 b + 2 a i ) 2 − 4 ( 1 ) ( − 1 ) = 2 2 b − 2 a i ± 2 1 − ( a + b i ) 2 = b − a i ± 1 − ( a + b i ) 2 ⟹ i u = ln ( b − a i ± 1 − ( a + b i ) 2 ) = ln ( a i − b ± 1 − ( a + b i ) 2 ) + ln ( − 1 ) = ln ( a i − b ± 1 − ( a + b i ) 2 ) + 2 π i + 2 π i C 1
Note: ln ( − 1 ) = ln ( e 2 π i + 2 π n i ) = 2 π i + 2 π n i where n is an integer.
⟹ u = − ln ( a i − b ± 1 − ( a + b i ) 2 ) i − 2 π − 2 π C 1
We can now sub in cos ( x ) and use the complex expression of cosine now: ⟹ cos ( x ) = − ln ( a i − b ± 1 − ( a + b i ) 2 ) i − 2 π − 2 π C 1 ⟹ 2 e i x + e − i x = − ln ( a i − b ± 1 − ( a + b i ) 2 ) i − 2 π − 2 π C 1 ⟹ e i x + e − i x = − 2 ln ( a i − b ± 1 − ( a + b i ) 2 ) i − π − 4 π C 1 ⟹ ( e i x ) 2 + = − [ 2 ln ( a i − b ± 1 − ( a + b i ) 2 ) i + π + 4 π C 1 ] e i x
We can let t = 2 ln ( a i − b ± 1 − ( a + b i ) 2 ) i + π + 4 π C 1 to save the writing: ⟹ ( e i x ) 2 + 1 = − t e i x ⟹ ( e i x ) 2 + t e i x + 1 = 0
We can now solve for e i x using the quadratic formula once again: ⟹ e i x = 2 ( 1 ) − ( t ) ± ( − t ) 2 − 4 ( 1 ) ( 1 ) = 2 − t ± t 2 − 4 ⟹ i x = ln ( 2 − t ± t 2 − 4 ) = ln ( t ± t 2 − 4 ) + ln ( − 1 ) − ln ( 2 ) = ln ( t ± t 2 − 4 ) − ln ( 2 ) + 2 π i + 2 π i C 2 ⟹ x = ln ( 2 ) i − ln ( t ± t 2 − 4 ) i − 2 π − 2 π C 2
Thus, we get x as − 2 π − 2 π c 2 + i ( ln ( 2 ) − ln ( t ± t 2 − 4 ) ) where t = ( c 1 4 + 1 ) π + i 2 ln ( a i − b ± 1 − ( a + b i ) 2 )
We can deduce that s 1 = 2 , s 2 = 4 and s 3 = 1 so: n = 1 ∑ 3 s n = 2 + 4 + 1 = 7