Computer Science or Algebra?

Algebra Level 4

What values of z z satisfy the equation below?

z + 1 z = z 2 + 1 z 2 = z 4 + 1 z 4 = = z 2 m + 1 z 2 m = z+\frac{1}{z}=z^2+\frac{1}{z^2}=z^4+\frac{1}{z^4}=\cdots=z^{2^m}+\frac{1}{z^{2^m}}=\cdots

Insufficient information ± ω \pm \omega , ± ω 2 \pm \omega^2 + 1 +1 , + ω +\omega , + ω 2 +\omega^2 ± 1 \pm 1 , ± ω \pm \omega , ± ω 2 \pm \omega^2 1 -1 , ω -\omega , ω 2 -\omega^2 No such value exists None of these 1 -1 , + 1 +1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dong kwan Yoo
May 30, 2018

By condition of problem,

solution of x + 1 x x + \frac{1}{x} = x 2 + 1 x 2 x^2 + \frac{1}{x^2 } : z , z 2 , z 4 , . . . . z ~,~z^2 ~,~z^4 ~,~ ....

x + 1 x x + \frac{1}{x} = x 2 + 1 x 2 x^2 + \frac{1}{x^2 }

x 3 + x = x 4 + 1 x^3 + x = x^4 + 1

( x 1 ) 2 ( x 2 + x + 1 ) = 0 (x-1)^2 (x^2 + x + 1 ) = 0

therefore x = ω , ω 2 , 1 x = \omega , \omega ^2 , 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...