Computing to Infinity

Level pending

*How much is *

1 7 \frac{1}{7} + 2 7 2 \frac{2}{7^{2}} + 1 7 3 \frac{1}{7^{3}} + 2 7 4 \frac{2}{7^{4}} + 1 7 5 \frac{1}{7^{5}} + 2 7 6 \frac{2}{7^{6}} + 1 7 7 \frac{1}{7^{7}} . . . . . . . . . . . . ............

to infinity ?

1 1 1 14 \frac{1}{14} 3 16 \frac{3}{16} 3 4 \frac{3}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Engelsman
Jan 10, 2021

We have the infinite series:

Σ k = 1 1 7 2 k 1 + 2 7 2 k = 9 Σ k = 1 ( 1 49 ) k = 9 ( 1 / 49 1 1 / 49 ) = 9 ( 1 48 ) = 3 16 . \Sigma_{k=1}^{\infty} \frac{1}{7^{2k-1}} + \frac{2}{7^{2k}} = 9 \cdot \Sigma_{k=1}^{\infty} (\frac{1}{49})^{k} = 9 \cdot (\frac{1/49}{1-1/49}) = 9(\frac{1}{48}) = \boxed{\frac{3}{16}}.

5+5=10 so it must be 64+64.

Am Kemplin - 1 month, 3 weeks ago
Võ Trọng
Jan 31, 2014

Using Turbo Pascal, we have the following code

# var a,b,c,i:real;i:longint;
# begin
# c:=0;
# for i:=1 to 22 do
# begin
# a:=1/(exp((2*i-1)*ln(7)));
# b:=1/(exp((2*i-1)*ln(7)));
# c:=a+b;
# end;
# write(c:0:10);
# readln;
# end.

After you press Crtl+F9, you'll see the result is 0.1875000000 3 16 0.1875000000 \approx \frac{3}{16}

Or you can do this

We write A = ( 1 7 ) 1 + ( 1 7 ) 2 + ( 1 7 ) 3 + . . . + ( 1 7 ) 2 + ( 1 7 ) 4 + . . . A=(\frac{1}{7})^{1}+(\frac{1}{7})^{2}+(\frac{1}{7})^{3}+...+(\frac{1}{7})^{2}+(\frac{1}{7})^{4}+...

We can see this expression is an infinite geometric series with d 1 = 1 7 d_{1}=\frac{1}{7} and d 2 = ( 1 7 ) 2 d_{2}=(\frac{1}{7})^{2} are common ratio. So that we have:

A = 1 7 1 1 7 + ( 1 7 ) 2 1 ( 1 7 ) 2 = 3 16 A=\frac{\frac{1}{7}}{1-\frac{1}{7}}+\frac{(\frac{1}{7})^{2}}{1-(\frac{1}{7})^{2}}=\frac{3}{16}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...