Concave mirror practice

A 40 -cm- 40\text{-cm-} tall book is placed a cm a \text{ cm} in front of a concave mirror of focal length a 2 cm . \dfrac a2 \text{ cm}. How tall is the image in cm ? \text{cm}?


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Mirrors

Given: Focal length = a 2 cm Image distance = a cm Image height = 40 cm . \large \displaystyle \text{Given:} \\ \large \displaystyle \text{Focal length } = \frac{a}{2} \text{ cm}\\ \large \displaystyle \text{Image distance } = a \text{ cm}\\ \large \displaystyle \text{Image height } = 40 \text{ cm}.

It is clear that the image is placed on Center of Curvature \color{#3D99F6}{\text{Center of Curvature}} on the principle axis, so the image formed is just right below the object.

Proof \Large \displaystyle \color{#69047E}{\text{Proof}}

Mirror formula: 1 f = 1 v + 1 u 1 a 2 = 1 a + 1 u 1 u = 2 a 1 a 1 u = 1 a u = a . The magnification of mirror is given by the formula m = v u = h h v u = h h a a = h 40 h = 40 cm \large \displaystyle \text{Mirror formula: }\\ \large \displaystyle \frac{1}{f} = \frac{1}{v} + \frac{1}{u}\\ \large \displaystyle \implies \frac{1}{\frac{a}{2}} = \frac{1}{a} + \frac{1}{u}\\ \large \displaystyle \implies \frac{1}{u} = \frac{2}{a} - \frac{1}{a}\\ \large \displaystyle \implies \frac{1}{u} = \frac{1}{a}\\ \large \displaystyle \therefore u = a.\\ \large \displaystyle \text{The magnification of mirror is given by the formula }\\ \large \displaystyle m = -\frac{v}{u} = \frac{h'}{h}\\ \large \displaystyle \implies - \frac{v}{u} = \frac{h'}{h}\\ \large \displaystyle \implies - \frac{a}{a} = \frac{h'}{40}\\ \large \displaystyle \implies h' = -40 \text{ cm} .

Therefore, the image size is same is object size. Here negative sign indicates that the image is inverted.

Image size = 40 cm \Large \displaystyle \text{Image size } = \color{#D61F06}{40 \text{ cm}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...