Boost your Understanding -1

Algebra Level 5

How many integral values of a a lie in the interval [ 1000 , 1000 ] [-1000,1000] for which the inequality 4 x a . 2 x a + 3 0 4^x-a.2^x-a+3 \leq 0 is satisfied by at least one real x x .


The answer is 999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ronak Agarwal
Feb 9, 2015

Take 2 x = y 2^{x}=y where x ϵ R , y > 0 x \epsilon R, y >0

This question gets transformed as follows :

How many integral values of a a lie in the interval [ 1000 , 1000 ] [-1000,1000] such that :

y 2 a y + 3 a 0 y^{2}-ay + 3-a \le 0

is satisfied by at least one y > 0 y>0

For this inequality to be satisfied there must exist at least one positive root of the quadratic.

Hence D i s c r i m i n a n t 0 Discriminant \ge 0

a 2 + 4 a 12 0 {a}^{2}+4a-12 \ge 0

a 6 \Rightarrow a \le -6 or a 2 a\ge 2

Now since we want at least one positive root hence we can do it in two ways either make two cases as one positive and one negative root or both positive roots Or we can find the condition of getting both non-positive roots and exclude all those possible values of a a .

I will do it the second way.

Condition for both non-negative roots :

the value of quadratic at y = 0 y=0 is greater than or equal to 0 0 and the vertex of the parabola made by the quadratic in co-ordinate plane must have negative abscissa.

3 a 0 \Rightarrow 3-a \ge 0

a 2 0 \Rightarrow \frac{a}{2} \le 0

Finally a 0 a \le 0

Excluding these values of a a and taking the intersection of the rest of the values with the values of a a obtained in the condition D i s c r i m i n a n t > 0 Discriminant >0 we have :

a 2 a \ge 2

Finally giving us 999 999 values.

The inequality can be rewritten as

( 4 x + 3 ) a ( 2 x + 1 ) (4^x+3) \leq a(2^x+1)

Noting that 2 x + 1 > 0 , x 2^x+1>0, \forall x ,

4 x + 3 2 x + 1 a \frac{4^x+3}{2^x+1} \leq a

Since we are interested in solutions for a a , we need

a min x 4 x + 3 2 x + 1 a \geq \min_x \frac{4^x+3}{2^x+1}

Differentiating the function on the right and equating to zero

d d x 4 x + 3 2 x + 1 = 4 x ln ( 4 ) ( 2 x + 1 ) 2 x ln ( 2 ) ( 4 x + 3 ) ( 2 x + 1 ) 2 = 0 \frac{d}{dx}\frac{4^x+3}{2^x+1}=\frac{4^x\ln(4)(2^x+1)-2^x\ln(2)(4^x+3)}{(2^x+1)^2}=0

Solving,

2 x ln ( 2 ) ( 4 x + 2 × 2 x 3 ) = 0 2^x\ln(2)(4^x+2\times 2^x-3)=0

which implies

( ( 2 x ) 2 + 2 × 2 x 3 ) = ( 2 x + 3 ) ( 2 x 1 ) = 0 ((2^x)^2+2\times 2^x-3)=(2^x+3)(2^x-1)=0

Since, 2 x > 0 2^x>0 , the minimizing solution is 2 x = 1 2^x=1 . Substituting we have

a 1 + 3 1 + 1 = 2 a\geq \frac{1+3}{1+1} = 2

Hence, the number of integer values of a a satisfying thw inequality = 1000 2 + 1 = 999 1000-2+1=\boxed{999}

Dhruva Patil
Feb 9, 2015

4 x a . 2 x a + 3 0 L e t t = 2 x S i n c e x ϵ ( , ) t ϵ ( 0 , ) R e w r i t i n g t h e e q u a t i o n , t 2 a t a + 3 0 t = a ± ( a + 2 ) 2 16 2 C o n d i t i o n o f t h e d i s c r i m i n a n t : ( a + 2 ) 2 16 0 ( a + 2 ) 2 16 a 2 o r a 6 C o n d i t i o n f o r t t o s a t i s f y i t s b o u n d s t ϵ ( 0 , ) t 0 a ± ( a + 2 ) 2 16 0 C a s e 1 : a i s p o s i t i v e a n d g r e a t e r t h a n 1 T h e r e i s a t l e a s t o n e r o o t . i . e . a + ( a + 2 ) 2 16 0 i s a l w a y s s a t i s f i e d . C a s e 2 : a i s n e g a t i v e a n d l e s s e r t h a n 5. a ( a + 2 ) 2 16 0 w i l l n e v e r h o l d . a + ( a + 2 ) 2 16 0 h a v e t o c h e c k i f t h i s w i l l h o l d . F o r t h e a b o v e c o n d i t i o n t o h o l d , ( a + 2 ) 2 16 a ( a + 2 ) 2 16 a 2 a 2 + 4 a 12 a 2 a 3 B u t , o u r i n t i a l a s s u m p t i o n w a s a i s n e g a t i v e . T h e r e a r e n o n e g a t i v e v a l u e s o f a t h a t w i l l s a t i s f y t h e c o n d i t i o n s . H e n c e , a ϵ [ 2 , 1000 ] 999 v a l u e s 4^{ x }-a.2^{ x }-a+3\leq 0\\ Let\quad t=2^{ x }\\ Since\quad x\epsilon \left( { -\infty },{ \infty } \right) \rightarrow t\epsilon \left( { 0 },{ \infty } \right) \\ Rewriting\quad the\quad equation,\\ t^{ 2 }-at-a+3\leq 0\\ t=\frac { a\pm \sqrt { { (a+2) }^{ 2 }-16 } }{ 2 } \\ Condition\quad of\quad the\quad discriminant:\\ { (a+2) }^{ 2 }-16\ge 0\\ { (a+2) }^{ 2 }\ge 16\\ a\ge 2\quad or\quad a\le -6\\ Condition\quad for\quad t\quad to\quad satisfy\quad its\quad bounds\quad t\epsilon \left( { 0 },{ \infty } \right) \\ t\ge 0\\ a\pm \sqrt { { (a+2) }^{ 2 }-16 } \ge 0\\ \underline { Case\quad 1: } \\ a\quad is\quad positive\quad and\quad greater\quad than\quad 1\quad \\ There\quad is\quad at\quad least\quad one\quad root.\quad i.e.\\ \\ a+\sqrt { { (a+2) }^{ 2 }-16 } \ge 0\quad is\quad always\quad satisfied.\\ \underline { Case\quad 2: } \\ a\quad is\quad negative\quad and\quad lesser\quad than\quad 5.\\ a-\sqrt { { (a+2) }^{ 2 }-16 } \ge 0\quad will\quad never\quad hold.\\ a+\sqrt { { (a+2) }^{ 2 }-16 } \ge 0\quad have\quad to\quad check\quad if\quad this\quad will\quad hold.\\ For\quad the\quad above\quad condition\quad to\quad hold,\quad \\ \sqrt { { (a+2) }^{ 2 }-16 } \ge -a\\ \\ { (a+2) }^{ 2 }-16\ge { a }^{ 2 }\\ { a }^{ 2 }+4a-12\ge { a }^{ 2 }\\ a\ge 3\\ But,\quad our\quad intial\quad assumption\quad was\quad a\quad is\quad negative.\\ There\quad are\quad no\quad negative\quad values\quad of\quad a\quad \\ that\quad will\quad satisfy\quad the\quad conditions.\\ Hence,\quad a\epsilon \left[ 2,1000 \right] \Rightarrow \boxed { \boxed { 999\quad values } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...