2 + 4 x 1 + ( 2 + 4 x ) 2 1 + ( 2 + 4 x ) 3 1 + …
Above is a geometric series. Given that the condition for infinite sum to converge is x < a ∪ x > b . Find ( b a ) 2 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Assume 2 + 4 x 1 + ( 2 + 4 x ) 2 1 + ( 2 + 4 x ) 3 1 + … = S .
Here, first term, u 1 = 2 + 4 x 1 and second term u 2 = ( 2 + 4 x ) 2 1 .
So general ratio, r = u 1 u 2 = 2 + 4 x 1 ( 2 + 4 x ) 2 1 = ( 2 + 4 x ) 2 1 × ( 2 + 4 x ) = 2 + 4 x 1 .
S will only have a infinite sum if − 1 < r < 1 . So − 1 < 2 + 4 x 1 < 1 . Now,
− 1 ⇒ 2 + 4 x 1 ⇒ 2 + 4 x ⇒ 4 x ⟹ x < 2 + 4 x 1 > − 1 < − 1 < − 3 < − 4 3
Again,
2 + 4 x 1 ⇒ 2 + 4 x ⇒ 4 x ⟹ x < 1 > 1 > − 1 > − 4 1
So a = − 4 3 and b = − 4 1 . Hence ( b a ) 2 = ( − 4 1 − 4 3 ) 2 = ( 4 3 × 4 ) 2 = 3 2 = 9 .
Problem Loading...
Note Loading...
Set Loading...
For the given series to converge, ∣ 2 + 4 x ∣ > 1 ⟹ { 2 + 4 x > 1 2 + 4 x < − 1 ⟹ x > − 4 1 ⟹ x < − 4 3 . Therefore, ( b a ) 2 = ( − 4 1 − 4 3 ) 2 = 9 .