Add the Alphabets

( T H I R T Y ) 35 + ( F I V E ) 35 (THIRTY)_{35}+(FIVE)_{35}

Find the sum of the above two base-35 numbers in base 35.

Clarifications:

For base-35 numbers: 0 = 0 0=0 , 1 = 1 1=1 , 2 = 2 2=2 , ... 9 = 9 9=9 , A = 10 A=10 , B = 11 B=11 , C = 12 C=12 , ... X = 33 X=33 , Y = 34 Y=34 , and Z = 35 Z=35 .

For the answer, enter the sum of the decimal values of the base-35 digits. For example:

  • If the sum is R E A L L Y REALLY and R E A L L Y = 27 + 14 + 10 + 21 + 21 + 34 = 127 REALLY=27+14+10+21+21+34=127 , then the answer is 127 127 .
  • If the sum is 45 R E A L L Y = 4 + 5 + 27 + 14 + 10 + 21 + 21 + 34 = 136 45REALLY=4+5+27+14+10+21+21+34=136 , then the answer is 136 136 .


The answer is 130.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = ( T H I R T Y ) 35 + ( F I V E ) 35 = 3 5 5 T 35 + 3 5 4 H 35 + 3 5 3 I 35 + 3 5 2 R 35 + 35 T 35 + Y 35 + 3 5 3 F 35 + 3 5 2 I 35 + 35 V 35 + E 35 = 3 5 5 ( 29 ) + 3 5 4 ( 17 ) + 3 5 3 ( 18 ) + 3 5 2 ( 27 ) + 35 ( 29 ) + 34 + 3 5 3 ( 15 ) + 3 5 2 ( 18 ) + 35 ( 31 ) + 14 = 3 5 5 ( 29 ) + 3 5 4 ( 17 ) + 3 5 3 ( 18 + 15 ) + 3 5 2 ( 27 + 18 ) + 35 ( 29 + 31 ) + 34 + 14 = 3 5 5 ( 29 ) + 3 5 4 ( 17 ) + 3 5 3 ( 33 ) + 3 5 2 ( 45 ) + 35 ( 60 ) + 48 = 3 5 5 ( 29 ) + 3 5 4 ( 17 ) + 3 5 3 ( 33 ) + 3 5 2 ( 45 ) + 35 ( 60 + 1 ) + 13 = 3 5 5 ( 29 ) + 3 5 4 ( 17 ) + 3 5 3 ( 33 ) + 3 5 2 ( 45 + 1 ) + 35 ( 26 ) + 13 = 3 5 5 ( 29 ) + 3 5 4 ( 17 ) + 3 5 3 ( 33 + 1 ) + 3 5 2 ( 11 ) + 35 ( 26 ) + 13 = 3 5 5 ( 29 ) + 3 5 4 ( 17 ) + 3 5 3 ( 34 ) + 3 5 2 ( 11 ) + 35 ( 26 ) + 13 \begin{aligned} S & = (THIRTY)_{35} + (FIVE)_{35} \\ & = 35^5T_{35} + 35^4H_{35} + 35^3I_{35} + 35^2R_{35} + 35T_{35} + Y_{35} + 35^3F_{35} + 35^2I_{35} + 35V_{35} + E_{35} \\ & = 35^5(29) + 35^4(17) + 35^3(18) + 35^2(27) + 35(29) + 34 + 35^3(15) + 35^2(18) + 35(31) + 14 \\ & = 35^5(29) + 35^4(17) + 35^3(18+15) + 35^2(27+18) + 35(29+31) + 34+14 \\ & = 35^5(29) + 35^4(17) + 35^3(33) + 35^2(45) + 35(60) + 48 \\ & = 35^5(29) + 35^4(17) + 35^3(33) + 35^2(45) + 35(60\color{#D61F06}{+1}) + \color{#D61F06}{13} \\ & = 35^5(29) + 35^4(17) + 35^3(33) + 35^2(45\color{#D61F06}{+1}) + 35(\color{#D61F06}{26}) + 13 \\ & = 35^5(29) + 35^4(17) + 35^3(33\color{#D61F06}{+1}) + 35^2(\color{#D61F06}{11}) + 35(26) + 13 \\ & = 35^5(\color{#3D99F6}{29}) + 35^4(\color{#3D99F6}{17}) + 35^3(\color{#3D99F6}{34}) + 35^2(\color{#3D99F6}{11}) + 35(\color{#3D99F6}{26}) + \color{#3D99F6}{13} \end{aligned}

Therefore, the answer is 29 + 17 + 34 + 11 + 26 + 13 = 130 \color{#3D99F6}{29+17+34+11+26+13} = \boxed{130} .

Ah, Nice solution sir (+1). :)

Abhay Tiwari - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...