Confusing Order

Algebra Level 2

a = 2 1 500 , b = 3 1 300 , c = 5 1 200 , d = 4 1 100 \Large a=2^{\frac{1}{500}} \quad,\quad b=3^{\frac{1}{300}} \quad,\quad c=5^{\frac{1}{200}} \quad,\quad d=4^{\frac{1}{100}}

Arrange the numbers in descending order.

b > c > a > d b>c>a>d a > b > c > d a>b>c>d a > c > b > d a>c>b>d d > c > b > a d>c>b>a c > b > a > d c>b>a>d All are equal in value

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Sep 27, 2015

2 ( 1 500 ) 3000 = 2 3000 500 = 2 6 \Large 2^{\left(\frac{1}{500}\right){3000}} = 2^{\frac{3000}{500}} = 2^{6}

3 ( 1 300 ) 3000 = 3 3000 300 = 3 10 \Large 3^{\left(\frac{1}{300}\right){3000}} = 3^{\frac{3000}{300}} = 3^{10}

4 ( 1 100 ) 3000 = 4 3000 100 = 4 30 = ( 4 6 ) 5 \Large 4^{\left(\frac{1}{100}\right){3000}} = 4^{\frac{3000}{100}} = 4^{30}=(4^6)^5

5 ( 1 200 ) 3000 = 5 3000 200 = 5 15 = ( 5 3 ) 5 \Large 5^{\left(\frac{1}{200}\right){3000}} = 5^{\frac{3000}{200}} = 5^{15} =(5^3)^5

We clearly know that 4 6 > 125 4 30 > 5 15 \Large 4^6 > 125 \Rightarrow 4^{30} >5^{15}

Thus we have the inequality:

2 6 < 3 10 < 5 15 < 4 30 2 3000 500 < 3 3000 300 < 5 3000 200 < 4 3000 100 2 ( 1 500 ) 3000 < 3 ( 1 300 ) 3000 < 5 ( 1 200 ) 3000 < 4 ( 1 100 ) 3000 2 1 500 < 3 1 300 < 5 1 200 < 4 1 100 \Large{ 2^6 < 3^{10} < 5^{15} < 4^{30} \\ \Rightarrow 2^{\frac{3000}{500}} < 3^{\frac{3000}{300}} <5^{\frac{3000}{200}} <4^{\frac{3000}{100}} \\ \Rightarrow 2^{\left(\frac{1}{500}\right){3000}} < 3^{\left(\frac{1}{300}\right){3000}} < 5^{\left(\frac{1}{200}\right){3000}} < 4^{\left(\frac{1}{100}\right){3000}} \\ \Rightarrow \boxed{2^{\frac{1}{500}} < 3^{\frac{1}{300}} < 5^{\frac{1}{200}} < 4^{\frac{1}{100}}}}

Thus the decreasing order is d , c , b , a d,c,b,a .

if we take log in all options it wont effect the order so

a. l o g 2 1 500 log 2^{\large\frac{1}{500}} = 1 500 l o g 2 \frac{1}{500} log 2

b. l o g 3 1 300 log \large 3^{\frac{1}{300}} = 1 300 l o g 3 \frac{1}{300} log 3

c. l o g 5 1 200 log \large 5^{\frac{1}{200}} = 1 200 l o g 5 \frac{1}{200} log 5

d. l o g 4 1 100 log \large 4^{\frac{1}{100}} = 1 100 l o g 4 \frac{1}{100} log 4

Now as log 2 \approx log 3 \approx log 4 \approx log 5 = log n

a = 1 500 l o g ( n ) \frac{1}{500} log (n)

b = 1 300 l o g ( n ) \frac{1}{300} log (n)

c = 1 200 l o g ( n ) \frac{1}{200} log (n)

d = 1 100 l o g ( n ) \frac{1}{100} log (n)

d > c > b > a \large\boxed{ \Longrightarrow d > c > b > a}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...