Confusing sines and cosines

Level 2

The value of cos 2 5 5 + cos 5 5 cos 3 5 sin 1 0 + sin 2 0 cos 2 5 \cos^{2} 55^{\circ} +\cos 55^{\circ} \cos 35^{\circ} \sin 10^{\circ} + \sin 20^{\circ} \cos^{2} 5^{\circ} can be expressed as a fraction a b \frac{a}{b} , while a a and b b are positive integers which are relatively prime. Find a + b a+b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nishant Sharma
Jan 4, 2014

If the answer is of the form a b \frac{a}{b} then one should surely be convinced to simplify the expression using clever manipulations. First we use half-angle cosine formula to transform the square to a linear function.

Let the given expression be denoted by P P .

Using half-angle cosine formula we have,

P = cos 11 0 + 1 2 + 2 × cos 5 5 sin 5 5 2 sin 1 0 + sin 2 0 cos 1 0 + 1 2 P=\displaystyle\frac{\cos110^\circ+1}{2}+\displaystyle\frac{2\times\cos55^\circ\sin55^\circ}{2}\sin10^\circ+\sin20^\circ\displaystyle\frac{\cos10^\circ+1}{2}

\Rightarrow P = sin 2 0 + 1 2 + sin 11 0 2 sin 1 0 + sin 2 0 cos 1 0 + 1 2 P=\displaystyle\frac{-\sin20^\circ+1}{2}+\displaystyle\frac{\sin110^\circ}{2}\sin10^\circ+\sin20^\circ\displaystyle\frac{\cos10^\circ+1}{2}

\Rightarrow P = sin 2 0 2 + 1 2 + cos 2 0 sin 1 0 2 + sin 2 0 cos 1 0 2 + sin 2 0 2 P=\displaystyle\frac{-\sin20^\circ}{2}+\displaystyle\frac{1}{2}+\displaystyle\frac{\cos20^\circ\sin10^\circ}{2}+\displaystyle\frac{\sin20^\circ\cos10^\circ}{2}+\displaystyle\frac{\sin20^\circ}{2}

\Rightarrow P = 1 2 + sin 1 0 cos 2 0 + sin 2 0 cos 1 0 2 P=\displaystyle\frac{1}{2}+\displaystyle\frac{\sin10^\circ\cos20^\circ+\sin20^\circ\cos10^\circ}{2}

\Rightarrow P = 1 2 + sin 3 0 2 P=\displaystyle\frac{1}{2}+\displaystyle\frac{\sin30^\circ}{2}

\Rightarrow P = 1 2 + 1 2 × 2 P=\displaystyle\frac{1}{2}+\displaystyle\frac{1}{2\times2}

\Rightarrow P = 1 2 + 1 4 P=\displaystyle\frac{1}{2}+\displaystyle\frac{1}{4}

\Rightarrow P = 3 4 = a b P=\displaystyle\frac{3}{4}=\displaystyle\frac{a}{b}

So a + b = 3 + 4 = 7 a+b=3+4=\boxed{7} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...