Conic Sections: Challenge #8

Geometry Level 4

Sub-unit: Ellipse

Let tangents drawn at A and B points on the ellipse 4 x 2 + 9 y 2 = 36 4x^{2} + 9y^{2} = 36 meet at point P(1 , 3). If 'C' is the centre of ellipse and the area of quadrilateral PACB is L square units , then value of [L] , where [.] represents the greatest integer function , is equal to


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kelvin Hong
Jul 1, 2017

The function of line A B AB can be express by

x 9 + 3 y 4 = 1 \frac{x}{9}+\frac{3y}{4}=1

Proof will noted at bottom of solution.

Then find the point intersect by line A B AB and the ellipse,

A ( 9 5 , 8 5 ) A(-\frac{9}{5}, \frac{8}{5}) , B ( 45 17 , 16 17 ) B(\frac{45}{17},\frac{16}{17})

So area of the quadrilateral PACB will be

A r e a = 1 2 0 9 5 1 45 17 0 8 5 3 16 17 = 7 Area=\frac{1}{2} | \begin{matrix} 0 & -\frac{9}{5} & 1 & \frac{45}{17}\\ 0 & \frac{8}{5} & 3 & \frac{16}{17} \end{matrix} |=7

Proof:

Let point A,B be ( x 1 , y 1 ) (x_1,y_1) and ( x 2 , y 2 ) (x_2,y_2) ,

Using tangent line function of ellipse, we know

l A : x 1 x 9 + y 1 y 4 = 1 l_A : \frac{x_1x}{9}+\frac{y_1y}{4}=1

l B : x 2 x 9 + y 2 y 4 = 1 l_B : \frac{x_2x}{9}+\frac{y_2y}{4}=1

And P be intersect point by this two lines so x=1,y=3.

l A : x 1 9 + 3 y 1 4 = 1 l_A : \frac{x_1}{9}+\frac{3y_1}{4}=1

l B : x 2 9 + 3 y 2 4 = 1 l_B : \frac{x_2}{9}+\frac{3y_2}{4}=1

And so the straight line joins l A l_A and l B l_B is

l A B : x 9 + 3 y 4 = 1 l_AB : \frac{x}{9}+\frac{3y}{4}=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...