Conics!

Algebra Level 5

From a point A A common tangents are drawn to the circle x 2 + y 2 = 2 { x }^{ 2 }+{ y }^{ 2 }=2 and the parabola y 2 = 8 x { y }^{ 2 }=8x . Find the area of the quadrilateral formed by the common tangents, the chord of contact of the circle and the chord of contact of the parabola.


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yash Choudhary
Jan 2, 2015

We need to find the area of the quadrilateral P Q R S PQRS which is trapezium. L e t t h e e q u a t i o n o f t h e c o m m o n t a n g e n t b e y = m x + c . L e t t h e e q u a t i o n o f c i r c l e a n d p a r a b o l a b e x 2 + y 2 = a 2 2 a n d y = 4 a x , w h e r e a = 2. A p p l y i n g c o n d i t i o n f o r t a n g e n c y w e g e t , = > c = a m = ± a 2 1 + m 2 = > a 2 m 2 = a 2 2 ( 1 + m 2 ) = > m 4 + m 2 2 = 0 O n s o l v i n g w e g e t m = ± 1 , e q u a t i o n o f t a n g e n t s w i l l b e , = > y = x + a a n d y = x a N o w w e c a n f i n d t h e i n t e r s e c t i o n p o i n t s o f t a n g e n t a n d c i r c l e a n d t a n g e n t a n d p a r a b o l a . P ( a 2 , a 2 ) Q ( a 2 , a 2 ) R ( a , 2 a ) S ( a , 2 a ) A r e a o f q u a d r i l a t e r a l P Q R S = 1 2 ( P T ) ( P Q + R S ) = > a r e a = 1 2 ( a + a 2 ) ( a + 4 a ) = > a r e a = 1 2 × 3 a 2 × 5 a = > a r e a = 15 a 2 4 P u t t i n g a = 2 , a r e a = 15 4 × 4 = 15 Let\quad the\quad equation\quad of\quad the\quad common\quad tangent\quad be\quad y=mx+c.\\ Let\quad the\quad equation\quad of\quad circle\quad and\quad parabola\quad be\quad { x }^{ 2 }+{ y }^{ 2 }=\frac { { a }^{ 2 } }{ 2 } \quad and\quad y=4ax,\quad where\quad a=2.\\ Applying\quad condition\quad for\quad tangency\quad we\quad get,\\ =>\quad c=\frac { a }{ m } =\pm \frac { a }{ \sqrt { 2 } } \sqrt { 1+{ m }^{ 2 } } \\ =>\quad \frac { { a }^{ 2 } }{ { m }^{ 2 } } =\frac { { a }^{ 2 } }{ 2 } (1+{ m }^{ 2 })\\ =>\quad { m }^{ 4 }+{ m }^{ 2 }-2=0\\ On\quad solving\quad we\quad get\quad m=\pm 1,\\ \therefore \quad equation\quad of\quad tangents\quad will\quad be,\\ =>\quad y=x+a\quad and\quad y=-x-a\\ Now\quad we\quad can\quad find\quad the\quad intersection\quad points\quad of\quad tangent\quad and\quad circle\quad and\quad tangent\quad and\quad parabola.\\ \therefore \quad P(\frac { -a }{ 2 } ,\frac { a }{ 2 } )\quad Q(\frac { -a }{ 2 } ,\frac { -a }{ 2 } )\quad R(a,2a)\quad S(a,-2a)\\ Area\quad of\quad quadrilateral\quad PQRS=\frac { 1 }{ 2 } (PT)(PQ+RS)\\ =>\quad area=\frac { 1 }{ 2 } (a+\frac { a }{ 2 } )(a+4a)\\ =>\quad area=\frac { 1 }{ 2 } \times \frac { 3a }{ 2 } \times 5a\\ =>\quad area=\frac { 15{ a }^{ 2 } }{ 4 } \\ Putting\quad a=2,\quad area=\frac { 15 }{ 4 } \times 4=\boxed { 15 }

Nice solution :)

Aditya Tiwari - 6 years, 5 months ago

Did the same but this is brute force

Rohit Shah - 6 years, 5 months ago

Log in to reply

Yeah truly it's lengthy ......

Aditya Tiwari - 6 years, 5 months ago

I didnt used brute force. I am quite lazy and dont use it :)

Md Zuhair - 3 years, 5 months ago

I have seen this before, may be in IIT past papers.

Soumo Mukherjee - 6 years, 5 months ago

Log in to reply

You are absolutely correct.This question was asked in IIT.

Aditya Tiwari - 6 years, 5 months ago

Very lengthy

Swapnil Vatsal - 3 years, 6 months ago

Log in to reply

Hmm but i found a relatively shorter method

Md Zuhair - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...