Using the general form a x 2 + b x y + c y 2 + d x + e y = − 1 for the conics below:
Find the area of the region bounded by the two conics, the positive x -axis, and the lines y = 5 4 and y = − 5 4 to six decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
To find the conics using the general form a x 2 + b x y + c y 2 + d x + e y = − 1 .
To show the conic going thru the points ( 0 , 5 4 ) , ( 1 , 5 4 ) , ( 2 5 − 1 , 0 ) , ( 0 , 5 − 4 ) , and ( 2 1 − 5 , 0 ) is an ellipse.
Using the point ( 1 , 5 4 ) we obtain (1): a + 5 4 b + 2 5 1 6 c + d + 5 4 e = − 1
Using the point ( 0 , 5 4 ) we obtain (2): 2 5 1 6 c + 5 4 e = − 1
Using the point ( 0 , 5 − 4 ) we obtain (3): 2 5 1 6 c − 5 4 e = − 1
Using the point ( 2 5 − 1 , 0 ) we obtain (4): ( 2 5 − 1 ) 2 a + ( 2 5 − 1 ) d = − 1
Using the point ( 2 5 − 1 , 0 ) we obtain (4): ( 2 5 − 1 ) 2 a − ( 2 5 − 1 ) d = − 1
Using (4) and (5) we obtain: a = − ( 5 − 1 2 ) 2 and d = 0 .
Using (2) and (3) we obtain: c = 1 6 − 2 5 and e = 0 .
Using (1) ⟹ b = 4 5 ( 5 − 1 2 ) 2 .
Let x 0 = 2 5 − 1 ⟹ a = x 0 2 − 1 , b = 4 5 ( x 0 2 1 ) , c = 1 6 − 2 5 , and d = e = 0 ⟹ 1 6 x 2 − 2 0 x y + 2 5 x 0 2 y 2 = 1 6 x 0 2 and b 2 − 4 a c < 0 ⟹ we have an ellipse.
To find the area desired we need to solve for y = f ( x ) :
Solving for y we obtain y = 5 x 0 2 2 ( ± 4 x 0 2 − ( 4 x 0 4 − ( 4 x 0 2 − 1 ) x 2 + x ) .
We want the ellipse below the line y = 5 x 0 2 2 x which is f ( x ) = 5 x 0 2 2 ( − 4 x 0 2 − ( 4 x 0 4 − ( 4 x 0 2 − 1 ) x 2 + x )
To show the conic going thru the points ( 1 , 5 4 ) , ( 2 5 − 1 , 0 ) , ( 0 , 5 − 4 ) , and ( 2 1 − 5 , 0 ) and ( − 1 , 5 4 ) is an hyperbola.
a + 5 4 b + 2 5 1 6 c + d + 5 4 e = − 1
a − 5 4 b + 2 5 1 6 c − d + 5 4 e = − 1
( 2 5 − 1 ) 2 a + 2 5 − 1 d = − 1
( 2 5 − 1 ) 2 a − 2 5 − 1 d = − 1
2 5 1 6 c − 5 4 e = − 1
Letting x 0 = 2 5 − 1 and solving the system we obtain:
a = x 0 2 − 1 , d = b = 0 , c = 3 2 2 5 x 0 , e = 8 5 ( x 0 2 1 ) ⟹ 2 5 x 0 3 y 2 − 3 2 x 2 + 2 0 y = − 3 2 x 0 2 ⟹ 2 5 x 0 3 ( y + 5 x 0 3 2 ) 2 − 3 2 x 2 = x 3 4 − 3 2 x 0 5 which is a hyperbola.
To find the desired area we need to solve for y = g ( x ) .
Solving for y we obtain: y = ( 5 x 0 3 2 ) ( 8 x 0 3 x 2 + 1 − 8 x 0 5 − 1 ) , where y > = 5 − 4 .
Let g ( x ) = ( 5 x 0 3 2 ) ( 8 x 0 3 x 2 + 1 − 8 x 0 5 − 1 )
A 1 = ∫ x 0 1 f ( x ) − g ( x ) d x and A 2 = ∫ 0 x 0 g ( x ) − f ( x ) d x .
For A 1 :
For A 1 ∗ = ∫ x 0 1 f ( x ) ) :
Let 8 x 0 3 x = 1 − 8 x 0 5 tan ( θ ) ⟹ d x = 8 x 0 3 1 − 8 x 0 5
⟹ A 1 ∗ = ∫ x 0 1 f ( x ) d x = 5 x 0 3 2 ∗ ( 8 x 0 3 1 − 8 x 0 5 ∫ θ 1 θ 2 sec 3 ( θ ) d θ − ∫ x 0 1 d x )
Using integration by parts and evaluating the integral and simplifying we obtain:
A 1 ∗ = 5 x 0 3 2 ( 2 8 x 0 3 + 1 − 8 x 0 5 + 2 1 x 0 − 1 + ( 2 8 x 0 3 1 − 8 x 0 5 ) ∗ ln ∣ 1 + 8 x 0 5 8 x 0 3 + 1 − 8 x 0 5 + 8 x 0 3 ∣ ) ≈ . 1 5 0 4 6 9
For A 1 ∗ ∗ = ∫ x 0 1 g ( x ) ) :
Let 4 x 0 2 − 1 x = 2 x 0 2 sin ( θ ) ⟹ d x = 4 x 0 2 − 1 2 x 0 2 d θ
⟹ A 1 ∗ ∗ = 5 x 0 2 2 ( − 4 x 0 2 − 1 2 x 0 4 ∗ ( arcsin ( 2 x 0 2 4 x 0 2 − 1 x ) − 2 x 4 x 0 4 − ( 4 x 0 2 − 1 ) x 2 ) + 2 x 2 ) ∣ x 0 1 ≈ . 1 3 5 7 3 9 .
⟹ A 1 = A 1 ∗ − A 1 ∗ ∗ = . 0 1 4 7 3
Similarly for A 2 :
A 2 ∗ = ∫ 0 x 0 g ( x ) d x = − 5 4 x 0 2 − 1 4 x 0 2 arcsin ( 2 x 0 4 x 0 2 − 1 ) ≈ − . 2 6 4 2 6 1
A 2 ∗ ∗ = ∫ 0 x 0 f ( x ) d x = 5 x 0 3 2 ( 2 − x 0 + ( 2 8 x 0 3 1 − 8 x 0 5 ) ln ∣ 1 − 8 x 0 5 1 + 8 x 0 5 ∣ ) ≈ − . 3 0 8 2 3 9
⟹ A 2 = A 2 ∗ − A 2 ∗ ∗ = . 0 4 3 9 7 8
⟹ The desired Area A = A 1 + A 2 = 0 . 0 5 8 7 0 8