Conics!

Calculus Level 4

Using the general form a x 2 + b x y + c y 2 + d x + e y = 1 ax^2 + bxy + cy^2 + dx + ey = -1 for the conics below:

  • Find the conic that passes thru the points ( 1 , 4 5 ) \left(1,\frac{4}{5}\right) , ( 5 1 2 , 0 ) \left(\frac{\sqrt{5} - 1}{2},0\right) , ( 0 , 4 5 ) \left(0,-\frac{4}{5}\right) , ( 1 5 2 , 0 ) \left(\frac{1 - \sqrt{5}}{2},0\right) , and ( 1 , 4 5 ) \left(-1,\frac{4}{5}\right) .
  • Find the conic that passes thru the points ( 0 , 4 5 ) \left(0,\frac{4}{5}\right) , ( 1 , 4 5 ) \left(1,\frac{4}{5}\right) , ( 5 1 2 , 0 ) \left(\frac{\sqrt{5} - 1}{2},0\right) , ( 0 , 4 5 ) \left(0, -\frac{4}{5}\right) , and ( 1 5 2 , 0 ) \left(\frac{1 - \sqrt{5}}{2},0\right) .

Find the area of the region bounded by the two conics, the positive x x -axis, and the lines y = 4 5 y = \frac{4}{5} and y = 4 5 y = -\frac 45 to six decimal places.


The answer is 0.058708.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 14, 2019

To find the conics using the general form a x 2 + b x y + c y 2 + d x + e y = 1 ax^2 + bxy + cy^2 + dx + ey = -1 .

To show the conic going thru the points ( 0 , 4 5 ) , ( 1 , 4 5 ) , ( 5 1 2 , 0 ) , ( 0 , 4 5 ) (0,\dfrac{4}{5}) ,(1,\dfrac{4}{5}), (\dfrac{\sqrt{5} - 1}{2},0), (0,\dfrac{-4}{5}) , and ( 1 5 2 , 0 ) (\dfrac{1 - \sqrt{5}}{2},0) is an ellipse.

Using the point ( 1 , 4 5 ) (1,\dfrac{4}{5}) we obtain (1): a + 4 5 b + 16 25 c + d + 4 5 e = 1 a + \dfrac{4}{5}b + \dfrac{16}{25}c + d +\dfrac{4}{5}e = -1

Using the point ( 0 , 4 5 ) (0,\dfrac{4}{5}) we obtain (2): 16 25 c + 4 5 e = 1 \dfrac{16}{25}c + \dfrac{4}{5}e = -1

Using the point ( 0 , 4 5 ) (0,\dfrac{-4}{5}) we obtain (3): 16 25 c 4 5 e = 1 \dfrac{16}{25}c - \dfrac{4}{5}e = -1

Using the point ( 5 1 2 , 0 ) (\dfrac{\sqrt{5} - 1}{2},0) we obtain (4): ( 5 1 2 ) 2 a + ( 5 1 2 ) d = 1 (\dfrac{\sqrt{5} - 1}{2})^2a + (\dfrac{\sqrt{5} - 1}{2})d = -1

Using the point ( 5 1 2 , 0 ) (\dfrac{\sqrt{5} - 1}{2},0) we obtain (4): ( 5 1 2 ) 2 a ( 5 1 2 ) d = 1 (\dfrac{\sqrt{5} - 1}{2})^2a - (\dfrac{\sqrt{5} - 1}{2})d = -1

Using (4) and (5) we obtain: a = ( 2 5 1 ) 2 a = -(\dfrac{2}{\sqrt{5} - 1})^2 and d = 0 d = 0 .

Using (2) and (3) we obtain: c = 25 16 c = \dfrac{-25}{16} and e = 0 e = 0 .

Using (1) b = 5 4 ( 2 5 1 ) 2 \implies b = \dfrac{5}{4} (\dfrac{2}{\sqrt{5} - 1})^2 .

Let x 0 = 5 1 2 a = 1 x 0 2 , b = 5 4 ( 1 x 0 2 ) , c = 25 16 x_{0} = \dfrac{\sqrt{5} - 1}{2} \implies a = \dfrac{-1}{x_{0}^2}, b = \dfrac{5}{4}(\dfrac{1}{x_{0}^2}), c = \dfrac{-25}{16} , and d = e = 0 16 x 2 20 x y + 25 x 0 2 y 2 = 16 x 0 2 d = e = 0 \implies \boxed{16x^2 - 20xy + 25x_{0}^2y^2 = 16x_{0}^2} and b 2 4 a c < 0 b^2 - 4ac < 0 \implies we have an ellipse.

To find the area desired we need to solve for y = f ( x ) y = f(x) :

Solving for y y we obtain y = 2 5 x 0 2 ( ± 4 x 0 2 ( 4 x 0 4 ( 4 x 0 2 1 ) x 2 + x ) y = \dfrac{2}{5x_{0}^2}(\pm\sqrt{4x_{0}^2 - (4x_{0}^4 - (4x_{0}^2 - 1)x^2} + x) .

We want the ellipse below the line y = 2 5 x 0 2 x y = \dfrac{2}{5x_{0}^2}x which is f ( x ) = 2 5 x 0 2 ( 4 x 0 2 ( 4 x 0 4 ( 4 x 0 2 1 ) x 2 + x ) f(x) = \dfrac{2}{5x_{0}^2}(-\sqrt{4x_{0}^2 - (4x_{0}^4 - (4x_{0}^2 - 1)x^2} + x)

To show the conic going thru the points ( 1 , 4 5 ) , ( 5 1 2 , 0 ) , ( 0 , 4 5 ) (1,\dfrac{4}{5}), (\dfrac{\sqrt{5} - 1}{2},0), (0,\dfrac{-4}{5}) , and ( 1 5 2 , 0 ) (\dfrac{1 - \sqrt{5}}{2},0) and ( 1 , 4 5 ) (-1,\dfrac{4}{5}) is an hyperbola.

a + 4 5 b + 16 25 c + d + 4 5 e = 1 a + \dfrac{4}{5}b + \dfrac{16}{25}c + d + \dfrac{4}{5}e = -1

a 4 5 b + 16 25 c d + 4 5 e = 1 a - \dfrac{4}{5}b + \dfrac{16}{25}c - d + \dfrac{4}{5}e = -1

( 5 1 2 ) 2 a + 5 1 2 d = 1 (\dfrac{\sqrt{5} - 1}{2})^2a + \dfrac{\sqrt{5} - 1}{2}d = -1

( 5 1 2 ) 2 a 5 1 2 d = 1 (\dfrac{\sqrt{5} - 1}{2})^2a - \dfrac{\sqrt{5} - 1}{2}d = -1

16 25 c 4 5 e = 1 \dfrac{16}{25}c - \dfrac{4}{5}e = - 1

Letting x 0 = 5 1 2 x_{0} = \dfrac{\sqrt{5} - 1}{2} and solving the system we obtain:

a = 1 x 0 2 , d = b = 0 , c = 25 32 x 0 , e = 5 8 ( 1 x 0 2 ) 25 x 0 3 y 2 32 x 2 + 20 y = 32 x 0 2 a = \dfrac{-1}{x_{0}^2}, d = b = 0, c = \dfrac{25}{32} x_{0}, e = \dfrac{5}{8}(\dfrac{1}{x_{0}^2}) \implies 25x_{0}^3y^2 - 32x^2 + 20y = -32x_{0}^2 \implies 25 x 0 3 ( y + 2 5 x 0 3 ) 2 32 x 2 = 4 32 x 0 5 x 3 \boxed{25x_{0}^3(y + \dfrac{2}{5x_{0}^3})^2 - 32x^2 = \dfrac{4 - 32x_{0}^5}{x^3}} which is a hyperbola.

To find the desired area we need to solve for y = g ( x ) y = g(x) .

Solving for y y we obtain: y = ( 2 5 x 0 3 ) ( 8 x 0 3 x 2 + 1 8 x 0 5 1 ) y = (\dfrac{2}{5x_{0}^3})(\sqrt{8x_{0}^3x^2 + 1 - 8x_{0}^5} - 1) , where y > = 4 5 y >= \dfrac{-4}{5} .

Let g ( x ) = ( 2 5 x 0 3 ) ( 8 x 0 3 x 2 + 1 8 x 0 5 1 ) g(x) = (\dfrac{2}{5x_{0}^3})(\sqrt{8x_{0}^3x^2 + 1 - 8x_{0}^5} - 1)

A 1 = x 0 1 f ( x ) g ( x ) d x A_{1} = \int_{x_{0}}^{1} f(x) - g(x) dx and A 2 = 0 x 0 g ( x ) f ( x ) d x A_{2} = \int_{0}^{x_{0}} g(x) - f(x) dx .

For A 1 A_{1} :

For A 1 = x 0 1 f ( x ) ) A_{1}^{*} = \int_{x_{0}}^{1} f(x)) :

Let 8 x 0 3 x = 1 8 x 0 5 tan ( θ ) d x = 1 8 x 0 5 8 x 0 3 \sqrt{8x_{0}^3} x = \sqrt{1 - 8x_{0}^5}\tan(\theta) \implies dx = \sqrt{\dfrac{1 - 8x_{0}^5}{8x_{0}^3}}

A 1 = x 0 1 f ( x ) d x = \implies A_{1}^{*} = \int_{x_{0}}^{1} f(x) dx = 2 5 x 0 3 ( 1 8 x 0 5 8 x 0 3 θ 1 θ 2 sec 3 ( θ ) d θ x 0 1 d x ) \dfrac{2}{5x_{0}^3} * (\dfrac{1 - 8x_{0}^5}{\sqrt{8x_{0}^3}}\int_{\theta_{1}}^{\theta_{2}} \sec^3(\theta) d\theta - \int_{x_{0}}^{1} dx)

Using integration by parts and evaluating the integral and simplifying we obtain:

A 1 = 2 5 x 0 3 ( 8 x 0 3 + 1 8 x 0 5 2 + 1 2 x 0 1 + ( 1 8 x 0 5 2 8 x 0 3 ) ln 8 x 0 3 + 1 8 x 0 5 + 8 x 0 3 1 + 8 x 0 5 ) . 150469 A_{1}^{*} = \dfrac{2}{5x_{0}^3}(\dfrac{\sqrt{8x_{0}^3 + 1 - 8x_{0}^5}}{2} + \dfrac{1}{2}x_{0} - 1 + (\dfrac{1 - 8x_{0}^5}{2\sqrt{8x_{0}^3}}) * \ln|\dfrac{\sqrt{8x_{0}^3 + 1 - 8x_{0}^5} + \sqrt{8x_{0}^3}}{1 + \sqrt{8x_{0}^5}}|) \approx \boxed{.150469}

For A 1 = x 0 1 g ( x ) ) A_{1}^{**} = \int_{x_{0}}^{1} g(x)) :

Let 4 x 0 2 1 x = 2 x 0 2 sin ( θ ) d x = 2 x 0 2 4 x 0 2 1 d θ \sqrt{4x_{0}^2 - 1} x = 2x_{0}^2 \sin(\theta) \implies dx = \dfrac{2x_{0}^2}{\sqrt{4x_{0}^2 - 1}} d\theta

A 1 = 2 5 x 0 2 ( 2 x 0 4 4 x 0 2 1 ( arcsin ( 4 x 0 2 1 x 2 x 0 2 ) x 2 4 x 0 4 ( 4 x 0 2 1 ) x 2 ) + x 2 2 ) x 0 1 . 135739 \implies A_{1}^{**} = \dfrac{2}{5x_{0}^2}(-\dfrac{2x_{0}^4}{\sqrt{4x_{0}^2 - 1}} * (\arcsin(\dfrac{\sqrt{4x_{0}^2 - 1}x}{2x_{0}^2}) - \dfrac{x}{2}\sqrt{4x_{0}^4 - (4x_{0}^2 - 1)x^2}) + \dfrac{x^2}{2})|_{x_{0}}^{1} \approx \boxed{.135739} .

A 1 = A 1 A 1 = . 01473 \implies A_{1} = A_{1}^{*} - A_{1}^{**} = \boxed{.01473}

Similarly for A 2 A_{2} :

A 2 = 0 x 0 g ( x ) d x A_{2}^{*} = \int_{0}^{x_{0}} g(x) dx = 4 x 0 2 5 4 x 0 2 1 arcsin ( 4 x 0 2 1 2 x 0 ) . 264261 -\dfrac{4x_{0}^2}{5\sqrt{4x_{0}^2 - 1}}\arcsin(\dfrac{\sqrt{4x_{0}^2 - 1}}{2x_{0}}) \approx \boxed{-.264261}

A 2 = 0 x 0 f ( x ) d x = 2 5 x 0 3 ( x 0 2 + ( 1 8 x 0 5 2 8 x 0 3 ) ln 1 + 8 x 0 5 1 8 x 0 5 ) . 308239 A_{2}^{**} = \int_{0}^{x_{0}} f(x) dx = \dfrac{2}{5x_{0}^3}(\dfrac{-x_{0}}{2} + (\dfrac{1 - 8x_{0}^5}{2\sqrt{8x_{0}^3}})\ln|\dfrac{1 + \sqrt{8x_{0}^5}}{\sqrt{1 - 8x_{0}^5}}|) \approx \boxed{-.308239}

A 2 = A 2 A 2 = . 043978 \implies A_{2} = A_{2}^{*} - A_{2}^{**} = \boxed{.043978}

\implies The desired Area A = A 1 + A 2 = 0.058708 A = A_{1} + A_{2} = \boxed{0.058708}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...