If the conic a x 2 + b x y + c y 2 = 4 2 passes thru the points ( 3 , 2 3 ) , ( − 3 , − 2 3 ) , ( 2 1 , 0 ) , ( − 2 1 , 0 ) , ( 7 2 7 , 2 ( 7 2 7 − 1 ) ) , find the area bounded by the given conic and the parallel lines y = 2 − 3 x + 2 3 1 3 and y = 2 − 3 x − 2 3 1 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Deriving the conic a x 2 + b x y + c y 2 = 4 2 using the points ( 3 , 2 3 ) , ( − 3 , − 2 3 ) , ( 2 1 , 0 ) , ( − 2 1 , 0 ) , ( 7 2 7 , 2 ( 7 2 7 − 1 ) ) :
Using the above points we obtain the system:
2 1 a = 4 2 ⟹ a = 2 ⟹ .
b + 2 c = 6
( 7 2 7 − 7 2 7 ) b + ( 6 8 − 4 7 2 7 ) c = 1 2 0
⟹ 2 ( 1 − 7 2 7 ) c = 6 ( 7 2 7 − 1 ) ⟹ c = − 3 ⟹ b = 1 2 ⟹
2 x 2 + 1 2 x y − 3 y 2 = 4 2 which is a hyperbola since b 2 − 4 a c > 0 .
Solving for y we obtain: y = ± 3 1 4 x 2 − 4 2 + 2 x .
Using the symmetry about the line y = 2 − 3 x we use g ( x ) = − 3 1 4 x 2 − 4 2 + 2 x which is below the y = 2 3 where x ≥ 3 .
Let f ( x ) = 2 − 3 x + 2 3 1 3 .
f ( x ) = g ( x ) ⟹ 2 3 1 4 x 2 − 4 2 = 7 x − 3 1 3 ⟹ 5 6 x 2 − 1 6 8 = 1 4 7 x 2 − 1 2 6 1 3 x + 3 5 ⟹ 9 1 x 2 − 1 2 6 1 3 x + 5 1 9 = 0 ⟹ x = 7 1 3 6 3 ± 4 2 1 .
Let x 1 = 7 1 3 6 3 − 4 2 1 and x 2 = 7 1 3 6 3 + 4 2 1
The area A = 2 ∫ x 1 x 2 ( f ( x ) − g ( x ) ) d x = 2 ∫ x 1 x 2 ( 3 1 4 x 2 − 4 2 − 2 7 x + 2 3 3 ) d x
Let A 1 ( x ) = ∫ 3 1 4 x 2 − 4 2 = 3 1 4 ∫ x 2 − 3 d x
Let x = 3 sec ( θ ) ⟹ d x = 3 sec ( θ ) tan ( θ ) ⟹ A 1 ( θ ) = 4 2 ∫ s e c 3 ( θ ) − s e c ( θ ) d θ
For ∫ sec 3 ( θ ) Let u = sec ( θ ) ⟹ d u = sec ( θ ) tan ( θ ) d θ d v = s e c 2 ( θ ) d θ ⟹ v = t a n ( θ ) ⟹ 2 ∫ sec 3 ( θ ) d θ = sec ( θ ) tan ( θ ) + ln ∣ sec ( θ ) + tan ( θ ) ∣ ⟹ ∫ sec 3 ( θ ) d θ = 2 1 ( sec ( θ ) tan ( θ ) + ln ∣ sec ( θ ) + tan ( θ ) ∣ ) ⟹ A 1 ( θ ) = 2 4 2 ( sec ( θ ) tan ( θ ) − ln ∣ sec ( θ ) + tan ( θ ) ∣ ) ⟹
A 1 = 2 4 2 ( 3 x x 2 − 3 − ln ∣ 3 x + x 2 − 3 ) ∣ x 1 x 2 = 2 4 2 ( 3 x 2 x 2 2 − 3 − x 1 x 1 2 − 3 ) + ln ( x 2 + x 2 2 − 3 x 1 + x 1 2 − 3 ) ≈ 5 . 4 4 4 9 6 ⟹ A = 2 ( 5 . 4 4 4 9 6 − 4 . 8 3 4 3 6 ) = 2 ( . 6 1 0 6 ) = 1 . 2 2 1 2 .