Conics and lines

Level 2

If the conic a x 2 + b x y + c y 2 = 42 ax^2 + bxy + cy^2 = 42 passes thru the points ( 3 , 2 3 ) , ( 3 , 2 3 ) , ( 21 , 0 ) , ( 21 , 0 ) , ( 27 7 , 2 ( 27 7 1 ) ) (\sqrt{3},2\sqrt{3}), (-\sqrt{3},-2\sqrt{3}), (\sqrt{21},0),(-\sqrt{21},0), (\sqrt{\dfrac{27}{7}},2(\sqrt{\dfrac{27}{7}} - 1)) , find the area bounded by the given conic and the parallel lines y = 3 2 x + 3 13 2 y = \dfrac{-3}{2}x + \dfrac{3\sqrt{13}}{2} and y = 3 2 x 3 13 2 y = \dfrac{-3}{2}x - \dfrac{3\sqrt{13}}{2} .


The answer is 1.2212.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Apr 8, 2018

Deriving the conic a x 2 + b x y + c y 2 = 42 ax^2 + bxy + cy^2 = 42 using the points ( 3 , 2 3 ) , ( 3 , 2 3 ) , ( 21 , 0 ) , ( 21 , 0 ) , ( 27 7 , 2 ( 27 7 1 ) ) (\sqrt{3},2\sqrt{3}), (-\sqrt{3},-2\sqrt{3}), (\sqrt{21},0),(-\sqrt{21},0), (\sqrt{\dfrac{27}{7}},2(\sqrt{\dfrac{27}{7}} - 1)) :

Using the above points we obtain the system:

21 a = 42 a = 2 21a = 42 \implies a = 2 \implies .

b + 2 c = 6 b + 2c = 6

( 27 7 27 7 ) b + ( 68 4 27 7 ) c = 120 (\dfrac{27}{7} - \sqrt{\dfrac{27}{7}})b + (68 - 4\sqrt{\dfrac{27}{7}})c = 120

2 ( 1 27 7 ) c = 6 ( 27 7 1 ) c = 3 b = 12 \implies 2(1 - \sqrt{\dfrac{27}{7}})c = 6(\sqrt{\dfrac{27}{7}} - 1) \implies c = -3 \implies b = 12 \implies

2 x 2 + 12 x y 3 y 2 = 42 2x^2 + 12xy - 3y^2 = 42 which is a hyperbola since b 2 4 a c > 0 b^2 - 4ac > 0 .

Solving for y y we obtain: y = ± 14 x 2 42 3 + 2 x y = \pm\sqrt{\dfrac{14x^2 - 42}{3}} + 2x .

Using the symmetry about the line y = 3 2 x y = \dfrac{-3}{2}x we use g ( x ) = 14 x 2 42 3 + 2 x g(x) = -\sqrt{\dfrac{14x^2 - 42}{3}} + 2x which is below the y = 2 3 y = 2\sqrt{3} where x 3 x \geq \sqrt{3} .

Let f ( x ) = 3 2 x + 3 13 2 f(x) = \dfrac{-3}{2}x + \dfrac{3\sqrt{13}}{2} .

f ( x ) = g ( x ) 2 14 x 2 42 3 = 7 x 3 13 f(x) = g(x) \implies 2\sqrt{\dfrac{14x^2 - 42}{3}} = 7x - 3\sqrt{13} \implies 56 x 2 168 = 147 x 2 126 13 x + 35 91 x 2 126 13 x + 519 = 0 56x^2 - 168 = 147x^2 - 126\sqrt{13}x + 35 \implies 91x^2 - 126\sqrt{13}x + 519 = 0 \implies x = 63 ± 4 21 7 13 x = \dfrac{63 \pm 4\sqrt{21}}{7\sqrt{13}} .

Let x 1 = 63 4 21 7 13 x_{1} = \dfrac{63 - 4\sqrt{21}}{7\sqrt{13}} and x 2 = 63 + 4 21 7 13 x_{2} = \dfrac{63 + 4\sqrt{21}}{7\sqrt{13}}

The area A = 2 x 1 x 2 ( f ( x ) g ( x ) ) d x = 2 x 1 x 2 ( 14 x 2 42 3 7 2 x + 3 3 2 ) d x A = 2\int_{x_{1}}^{x_{2}} (f(x) - g(x)) dx = 2\int_{x_{1}}^{x_{2}} (\sqrt{\dfrac{14x^2 - 42}{3}} - \dfrac{7}{2}x + \dfrac{3\sqrt{3}}{2}) dx

Let A 1 ( x ) = 14 x 2 42 3 = 14 3 x 2 3 d x A_{1}(x) = \int \sqrt{\dfrac{14x^2 - 42}{3}} = \sqrt{\dfrac{14}{3}}\int \sqrt{x^2 - 3} dx

Let x = 3 sec ( θ ) d x = 3 sec ( θ ) tan ( θ ) x = \sqrt{3}\sec(\theta) \implies dx = \sqrt{3}\sec(\theta)\tan(\theta) \implies A 1 ( θ ) = 42 s e c 3 ( θ ) s e c ( θ ) d θ A_{1}(\theta) = \sqrt{42}\int sec^3(\theta) - sec(\theta) d\theta

For sec 3 ( θ ) \int \sec^3(\theta) Let u = sec ( θ ) d u = sec ( θ ) tan ( θ ) d θ u = \sec(\theta) \implies du = \sec(\theta)\tan(\theta)d\theta d v = s e c 2 ( θ ) d θ v = t a n ( θ ) dv = sec^2(\theta)d\theta \implies v = tan(\theta) \implies 2 sec 3 ( θ ) d θ = sec ( θ ) tan ( θ ) + ln sec ( θ ) + tan ( θ ) 2\int \sec^3(\theta) d\theta = \sec(\theta)\tan(\theta) + \ln|\sec(\theta) + \tan(\theta)| \implies sec 3 ( θ ) d θ = 1 2 ( sec ( θ ) tan ( θ ) + ln sec ( θ ) + tan ( θ ) ) \int \sec^3(\theta) d\theta = \dfrac{1}{2}(\sec(\theta)\tan(\theta) + \ln|\sec(\theta) + \tan(\theta)|) A 1 ( θ ) = 42 2 ( sec ( θ ) tan ( θ ) ln sec ( θ ) + tan ( θ ) ) \implies A_{1}(\theta) = \dfrac{\sqrt{42}}{2}(\sec(\theta)\tan(\theta) - \ln|\sec(\theta) + \tan(\theta)|) \implies
A 1 = 42 2 ( x x 2 3 3 ln x + x 2 3 3 ) x 1 x 2 A_{1} = \dfrac{\sqrt{42}}{2}(\dfrac{x\sqrt{x^2 - 3}}{3} - \ln|\dfrac{x + \sqrt{x^2 - 3}}{\sqrt{3}})|_{x_{1}}^{x_{2}} = 42 2 \dfrac{\sqrt{42}}{2} ( x 2 x 2 2 3 x 1 x 1 2 3 3 ) (\dfrac{x_{2}\sqrt{x_{2}^2 - 3} - x_{1}\sqrt{x_{1}^2 - 3}}{3}) + ln ( x 1 + x 1 2 3 x 2 + x 2 2 3 ) 5.44496 A = 2 ( 5.44496 4.83436 ) = 2 ( . 6106 ) = 1.2212 \ln(\dfrac{x_{1} + \sqrt{x_{1}^2 - 3}}{x_{2} + \sqrt{x_{2}^2 - 3}}) \approx 5.44496 \implies A = 2(5.44496 - 4.83436) = 2(.6106) = \boxed{1.2212} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...