Consider a graph on seven vertices. For each pair of vertices, you draw an edge between that pair of vertices with probability . Let be the expected number of connected components in graph . Then
where are relatively prime positive integers. Submit .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Using a computer program, I found the number of graphs on seven vertices that have e edges and k connected components: e \ k 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 ∑ 1 0 0 0 0 0 0 1 6 8 0 7 6 8 2 9 5 1 5 6 5 5 5 2 5 8 1 2 5 3 3 1 5 0 6 3 4 3 1 4 0 2 9 0 7 4 5 2 0 2 7 5 5 1 1 6 1 7 5 5 4 2 5 7 2 0 3 4 9 5 9 8 5 1 3 3 0 2 1 0 2 1 1 1 8 6 6 2 5 6 2 0 0 0 0 0 1 3 3 7 7 3 2 4 1 7 4 5 3 6 0 4 5 9 9 0 3 5 5 9 5 2 1 1 8 9 9 5 7 6 3 1 8 5 7 3 5 1 0 5 7 0 0 0 0 0 0 2 0 7 5 3 6 3 0 0 0 0 5 2 5 0 6 7 6 2 5 0 0 5 2 6 2 5 9 4 5 2 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 2 0 8 1 8 4 0 0 0 1 2 9 5 7 3 5 2 1 0 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 7 5 5 0 0 2 1 0 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 5 6 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Let P k ( p ) be the probability that there are k connected components. Then P 1 ( p ) P 2 ( p ) P 3 ( p ) P 4 ( p ) P 5 ( p ) P 6 ( p ) P 7 ( p ) = 1 6 8 0 7 p 6 ( 1 − p ) 1 5 + 6 8 2 9 5 p 7 ( 1 − p ) 1 4 + 1 5 6 5 5 5 p 8 ( 1 − p ) 1 3 + 2 5 8 1 2 5 p 9 ( 1 − p ) 1 2 + 3 3 1 5 0 6 p 1 0 ( 1 − p ) 1 1 + 3 4 3 1 4 0 p 1 1 ( 1 − p ) 1 0 + 2 9 0 7 4 5 p 1 2 ( 1 − p ) 9 + 2 0 2 7 5 5 p 1 3 ( 1 − p ) 8 + 1 1 6 1 7 5 p 1 4 ( 1 − p ) 7 + 5 4 2 5 7 p 1 5 ( 1 − p ) 6 + 2 0 3 4 9 p 1 6 ( 1 − p ) 5 + 5 9 8 5 p 1 7 ( 1 − p ) 4 + 1 3 3 0 p 1 8 ( 1 − p ) 3 + 2 1 0 p 1 9 ( 1 − p ) 2 + 2 1 p 2 0 ( 1 − p ) + p 2 1 , = 1 3 3 7 7 p 5 ( 1 − p ) 1 6 + 3 2 4 1 7 p 6 ( 1 − p ) 1 5 + 4 5 3 6 0 p 7 ( 1 − p ) 1 4 + 4 5 9 9 0 p 8 ( 1 − p ) 1 3 + 3 5 5 9 5 p 9 ( 1 − p ) 1 2 + 2 1 1 8 9 p 1 0 ( 1 − p ) 1 1 + 9 5 7 6 p 1 1 ( 1 − p ) 1 0 + 3 1 8 5 p 1 2 ( 1 − p ) 9 + 7 3 5 p 1 3 ( 1 − p ) 8 + 1 0 5 p 1 4 ( 1 − p ) 7 + 7 p 1 5 ( 1 − p ) 6 , = 5 2 5 0 p 4 ( 1 − p ) 1 7 + 6 7 6 2 p 5 ( 1 − p ) 1 6 + 5 0 0 5 p 6 ( 1 − p ) 1 5 + 2 6 2 5 p 7 ( 1 − p ) 1 4 + 9 4 5 p 8 ( 1 − p ) 1 3 + 2 1 0 p 9 ( 1 − p ) 1 2 + 2 1 p 1 0 ( 1 − p ) 1 1 , = 1 2 9 5 p 3 ( 1 − p ) 1 8 + 7 3 5 p 4 ( 1 − p ) 1 7 + 2 1 0 p 5 ( 1 − p ) 1 6 + 3 5 p 6 ( 1 − p ) 1 5 , = 2 1 0 p 2 ( 1 − p ) 1 9 + 3 5 p 3 ( 1 − p ) 1 8 , = 2 1 p ( 1 − p ) 2 0 , = ( 1 − p ) 2 1 .
We can compute that ∫ 0 1 P 1 ( p ) d p ∫ 0 1 P 2 ( p ) d p ∫ 0 1 P 3 ( p ) d p ∫ 0 1 P 4 ( p ) d p ∫ 0 1 P 5 ( p ) d p ∫ 0 1 P 6 ( p ) d p ∫ 0 1 P 7 ( p ) d p = 3 6 9 5 1 2 2 4 2 5 6 5 , = 2 2 1 7 0 7 2 2 1 1 0 9 3 , = 1 4 2 1 2 8 5 9 , = 1 0 0 3 2 5 0 5 , = 8 3 6 3 9 , = 2 2 1 , = 2 2 1 .
Finally, N ( p ) = P 1 ( p ) + 2 P 2 ( p ) + 3 P 3 ( p ) + ⋯ + 7 P 7 ( p ) , so ∫ 0 1 N ( p ) d p = ∫ 0 1 [ P 1 ( p ) + 2 P 2 ( p ) + 3 P 3 ( p ) + ⋯ + 7 P 7 ( p ) ] d p = ∫ 0 1 P 1 ( p ) d p + 2 ∫ 0 1 P 2 ( p ) d p + 3 ∫ 0 1 P 3 ( p ) d p + ⋯ + 7 ∫ 0 1 P 7 ( p ) d p = 3 6 9 5 1 2 2 4 2 5 6 5 ⋅ 1 + 2 2 1 7 0 7 2 2 1 1 0 9 3 ⋅ 2 + 1 4 2 1 2 8 5 9 ⋅ 3 + 1 0 0 3 2 5 0 5 ⋅ 4 + 8 3 6 3 9 ⋅ 5 + 2 2 1 ⋅ 6 + 2 2 1 ⋅ 7 = 2 9 1 7 2 5 9 9 1 1 .
@Christopher Criscitiello , is there any way to do these problems other than brute force?