Consecutive and twice!

Geometry Level 3

The sides of a triangle are consecutive integers n, n + 1 and n + 2 and the largest angle is twice the smallest angle. Find n.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mehul Chaturvedi
Jan 3, 2015

First of all I would use sine rule which states that s i n A a = s i n B b = s i n C c \dfrac{sin\angle A}{a}=\dfrac{sin\angle B}{b}=\dfrac{sin\angle C}{c}

now let sides be x 1 , x , x + 1 x-1,x,x+1 where longest side is x + 1 x+1 and shortest is x 1 x-1

s i n 2 a x + 1 = s i n a x 1 = s i n ( 180 3 a ) x \Rightarrow \dfrac{sin\angle 2a}{x+1}=\dfrac{sin\angle a}{x-1}=\dfrac{sin\angle (180-3a)}{x}

s i n 2 a x + 1 = s i n a x 1 ( x 1 ) s i n 2 a = ( x + 1 ) ( s i n a ) \Rightarrow \dfrac{sin\angle 2a}{x+1}=\dfrac{sin\angle a}{x-1} \Rightarrow (x-1)sin 2a=(x+1)(sin a)

2 ( x 1 ) s i n ( a ) c o s ( a ) = ( x + 1 ) s i n ( a ) \Rightarrow 2(x-1)sin(a)cos(a)=(x+1)sin(a)

c o s ( a ) = x + 1 2 x 2 \Rightarrow cos(a)=\dfrac{x+1}{2x-2}

now apply cosine rule

\implies ( x 1 ) 2 = x 2 + ( x + 1 ) 2 2 ( x ) ( x + 1 ) ( c o s ( a ) ) x 2 + 1 2 x = x 2 + x 2 + 1 + 2 x 2 ( x 2 + x ) ( x + 1 2 x 2 ) x 2 + 1 2 x = x 2 + x 2 + 1 + 2 x 2 x 2 2 x ) ( x + 1 2 x 2 ) (x-1)^2=x^2+(x+1)^2-2(x)(x+1)(cos(a)) \\ \Rightarrow x^2+1-2x=x^2+x^2+1+2x-2(x^2+x)(\dfrac{x+1}{2x-2}) \\ \Rightarrow x^2+1-2x=x^2+x^2+1+2x-2x^2-2x)(\dfrac{x+1}{2x-2})

4 x + x 2 = 2 [ ( x + 1 ) 2 ( x ) 2 x 2 2 ( x + 1 ) 2 2 x 2 = 4 + x 2 x 2 + 2 + 4 x = 8 x 8 + 2 x 2 2 x 2 x = 10 x = 5 \Rightarrow 4x+x^2=\dfrac{-2[(x+1)^2(x)}{2x-2} \\ \Rightarrow \dfrac{2(x+1)^2}{2x-2}=4+x \\ \Rightarrow 2x^2+2+4x=8x-8+2x^2 -2x \\ \Rightarrow 2x=10 \therefore x=5

now according to question x 1 = n n = 4 x-1=n \therefore n=4

So our answer is 4 \huge\Rightarrow \color{royalblue}{\boxed 4}

it can be 3 the three sides are 3,4,5 and one angle is 45' and another 90'

'আমিই দারদা' - 6 years, 5 months ago
Âmåñ Patel
Mar 2, 2015

3,4,5 could be the sides coz angle 45° and 90°

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...