The sides of a triangle are consecutive integers n, n + 1 and n + 2 and the largest angle is twice the smallest angle. Find n.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First of all I would use sine rule which states that a s i n ∠ A = b s i n ∠ B = c s i n ∠ C
now let sides be x − 1 , x , x + 1 where longest side is x + 1 and shortest is x − 1
⇒ x + 1 s i n ∠ 2 a = x − 1 s i n ∠ a = x s i n ∠ ( 1 8 0 − 3 a )
⇒ x + 1 s i n ∠ 2 a = x − 1 s i n ∠ a ⇒ ( x − 1 ) s i n 2 a = ( x + 1 ) ( s i n a )
⇒ 2 ( x − 1 ) s i n ( a ) c o s ( a ) = ( x + 1 ) s i n ( a )
⇒ c o s ( a ) = 2 x − 2 x + 1
now apply cosine rule
⟹ ( x − 1 ) 2 = x 2 + ( x + 1 ) 2 − 2 ( x ) ( x + 1 ) ( c o s ( a ) ) ⇒ x 2 + 1 − 2 x = x 2 + x 2 + 1 + 2 x − 2 ( x 2 + x ) ( 2 x − 2 x + 1 ) ⇒ x 2 + 1 − 2 x = x 2 + x 2 + 1 + 2 x − 2 x 2 − 2 x ) ( 2 x − 2 x + 1 )
⇒ 4 x + x 2 = 2 x − 2 − 2 [ ( x + 1 ) 2 ( x ) ⇒ 2 x − 2 2 ( x + 1 ) 2 = 4 + x ⇒ 2 x 2 + 2 + 4 x = 8 x − 8 + 2 x 2 − 2 x ⇒ 2 x = 1 0 ∴ x = 5
now according to question x − 1 = n ∴ n = 4
So our answer is ⇒ 4