Consecutive is (not so) unpredictable (Part 3)

Evaluate:

1 2 3 4 999 1000 . \large{1-2-3-4-\ldots-999-1000} .


The answer is -500498.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sai Ram
Aug 14, 2015

The given expression can be written as ,

1 ( 2 + 3 + 4 + 5 + . . . . . . . . . . . . . . . . . . . + 999 + 1000. ) 1-(2+3+4+5+...................+999+1000.)

Adding and subtracting 1. 1.

1 [ ( 1 + 2 + 3 + 4 + 5 + . . . . . . . . . . . . . . + 999 + 1000 ) 1. ] 1-[(1+2+3+4+5+..............+999+1000)-1.]

1 [ n = 1 1000 1 ] . 1-[\large\sum_{n=1}^{1000} -1].

1 [ 1000 1001 2 1 ] . 1-[\dfrac{1000*1001}{2}-1].

1 [ 500500 1. ] 1-[500500-1.]

1 [ 500499 ] . 1-[500499].

= 500498. =-500498.

Please up vote if you like it.

A = 1 2 3 999 1000 A=1-2-3-\ldots-999-1000

A = ( 2 1 ) 2 3 999 1000 A=(2-1)-2-3-\ldots-999-1000

A = 2 ( 1 + 2 + 3 + + 999 + 1000 ) A= 2-(1+2+3+\ldots+999+1000)

2 A = 4 ( 1001 + 1001 + 1001 + + 1001 + 1001 ) 2A= 4-(1001+1001+1001+\ldots+1001+1001)

2 A = 4 1001 × 1000 2A = 4 - 1001 \times 1000

A = 2 1001 × 1000 2 \Rightarrow A=2-\frac{1001\times1000}{2}

A = 2 500500 = 500498 A= 2-500500 = \boxed{-500498}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...