Consecutive Products And Modulos!

Let S S be the set of all natural numbers k k such that k ( k + 1 ) 60 ( m o d 72 ) k(k+1) \equiv 60 \pmod{72} and let S 72 S_{72} be the set of all elements of S S modulo 72 (so, if k S k \in S , then a S 72 a \in S_{72} iff a < 72 a < 72 and k a ( m o d 72 ) k \equiv a \pmod{72} ). Find the sum of all elements of S 72 S_{72} .


The answer is 142.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

James Shi
Feb 27, 2014

You can rewrite the modular equation in a factored form.

k ( k + 1 ) 60 72 0 ( m o d 72 ) k(k+1)-60-72\equiv 0 \pmod{72}

k 2 + k 132 0 ( m o d 72 ) k^2+k-132\equiv 0 \pmod{72}

( k + 12 ) ( k 11 ) 0 ( m o d 72 ) (k+12)(k-11)\equiv 0 \pmod{72}

k + 12 k+12 and k 11 k-11 differ by 25, which isn't divisible by 2 nor 3 (the only prime factors of 72), so at most one of the factors could be divisible by 8, and this applies to 9 as well. Therefore, there are 2 2 = 4 2\cdot 2 = 4 cases to consider.

Case 1: k + 12 0 ( m o d 8 ) k+12\equiv 0\pmod{8} and k + 12 0 ( m o d 9 ) k+12\equiv 0\pmod{9}

k + 12 0 ( m o d 72 ) k+12\equiv 0\pmod{72}

k 60 ( m o d 72 ) k\equiv 60 \pmod{72}

Case 2: k 11 0 ( m o d 8 ) k-11\equiv 0\pmod{8} and k 11 0 ( m o d 9 ) k-11\equiv 0\pmod{9}

k 11 0 ( m o d 72 ) k-11\equiv 0\pmod{72}

k 11 ( m o d 72 ) k\equiv 11\pmod{72}

Case 3: k + 12 0 ( m o d 8 ) k+12\equiv 0 \pmod{8} and k 11 0 ( m o d 9 ) k-11 \equiv 0 \pmod{9}

You can write them as:

k 4 ( m o d 8 ) k\equiv 4 \pmod{8} and k 2 ( m o d 9 ) k\equiv 2 \pmod{9}

By CRT, there is only one value of k ( m o d 72 ) k \pmod{72} that satisfies this congruence, which is 20 20 . (This can be shown with simple algebra.)

Case 4: k 11 0 ( m o d 8 ) k-11 \equiv 0 \pmod{8} and k + 12 0 ( m o d 9 ) k+12\equiv 0 \pmod{9}

You can write them as:

k 3 ( m o d 8 ) k\equiv 3 \pmod{8} and k 6 ( m o d 9 ) k\equiv 6 \pmod{9}

Following the same reasoning as the previous case, the only value of k ( m o d 72 ) k \pmod{72} is 51 51 .

All 4 cases have different values ( m o d 72 ) \pmod{72} so the answer is 60 + 11 + 20 + 51 = 142 60+11+20+51=\boxed{142} .

Great solution! Much better than mine. I wish I had seen this "trick" before. I used to do math Olympiads on my country, but my number theory "tricks" faded away.

João Baptista - 7 years, 3 months ago

Great factorisation.

A Brilliant Member - 7 years, 3 months ago

I used Chinese Remainder and hoped for small number of solutions, luckily that is the case.

Xuming Liang - 7 years, 3 months ago

Dude you are adding numbers modulo 72 and the answer should be 70.

Adrian Neacșu - 7 years, 2 months ago
João Baptista
Feb 20, 2014

The first step is to solve the modular equation k ( k + 1 ) 60 ( m o d 72 ) k(k+1)\equiv60\pmod{72} . We can restate this equation as k ( k + 1 ) = 72 n + 60 k(k+1)=72n+60 . It's clear that 12 k ( k + 1 ) 12 \mid k(k+1) , because the RHS is divisible by 12. So, we can use a brute force approach to find all "valid" values of k k : k 0 1 2 3 4 5 6 7 8 9 10 11 k ( k + 1 ) mod 12 0 2 6 0 8 6 6 8 0 6 2 0 \begin{matrix}\bf k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline \bf k(k+1) \textrm{ mod 12} & 0 & 2 & 6 & 0 & 8 & 6 & 6 & 8 & 0 & 6 & 2 & 0\end{matrix}

So, we have four cases: k = 12 a , k = 12 a + 3 , k = 12 a + 8 , k = 12 a + 11 k = 12a, k = 12a+3, k = 12a+8, k = 12a+11

  • For the first case, we have 12 a ( 12 a + 1 ) = 72 n + 60 12a(12a+1) = 72n+60 . Simplifying it, we have 12 a 2 + a = 6 n + 5 12a^2 + a = 6n+5 12 a 2 6 n = 5 a \Rightarrow 12a^2 - 6n = 5 - a . Since the LHS is divisible by 6, we have 6 5 a 6 \mid 5 - a , from which we deduce that a = 6 x + 5 a = 6x+5 . To prove that all a a is a solution, we can substitute it on the first equation: 432 x 2 + 720 x + 300 6 n = 6 x 432x^2 + 720x + 300 - 6n = -6x 6 n = 432 x 2 + 726 x + 300 \Rightarrow 6n = 432x^2 + 726x + 300 n = 72 x 2 + 121 x + 50 \Rightarrow n = 72x^2 + 121x + 50 . So, as a = 6 x + 5 a = 6x+5 , we have k = 72 x + 60 k = 72x+60

  • For the second case, we have ( 12 a + 3 ) ( 12 a + 4 ) = 72 n + 60 (12a+3)(12a+4) = 72n+60 144 a 2 + 84 a + 12 = 72 n + 60 \Rightarrow 144a^2 + 84a + 12 = 72n+60 12 a 2 + 7 a + 1 = 6 n + 5 \Rightarrow 12a^2 + 7a + 1 = 6n+5 12 a 2 6 n = 4 7 a \Rightarrow 12a^2 - 6n = 4-7a . As for the first case, 6 4 7 a 6 \mid 4-7a , from which a = 6 x + 4 a = 6x+4 . Substituting, we have 432 x 2 + 576 x + 192 6 n = 42 x 24 432x^2 + 576x + 192 - 6n = -42x-24 6 n = 432 x 2 + 618 x + 216 \Rightarrow 6n = 432x^2 + 618x + 216 n = 72 x 2 + 103 x + 36 \Rightarrow n = 72x^2 + 103x + 36 . As a = 6 x + 4 a = 6x+4 , we have k = 12 ( 6 x + 4 ) + 3 = 72 x + 51 k = 12(6x+4) + 3 = 72x+51 .

  • For the third case, ( 12 a + 8 ) ( 12 a + 9 ) = 72 n + 60 (12a+8)(12a+9) = 72n+60 144 a 2 + 204 a + 72 = 72 n + 60 \Rightarrow 144a^2 + 204a + 72 = 72n+60 12 a 2 + 17 a + 6 = 6 n + 5 \Rightarrow 12a^2 + 17a + 6 = 6n+5 12 a 2 6 n = 17 a 1 \Rightarrow 12a^2 - 6n = -17a-1 . We have 6 17 a + 1 6 \mid 17a+1 , from which a = 6 x + 1 a = 6x+1 . Substituting, 432 x 2 + 144 x + 12 6 n = 102 x 18 432x^2 + 144x + 12 - 6n = -102x-18 6 n = 432 x 2 + 246 x + 30 \Rightarrow 6n = 432x^2 + 246x + 30 n = 72 x 2 + 41 x + 5 \Rightarrow n = 72x^2 + 41x + 5 . As a = 6 x + 1 a = 6x+1 , we have k = 12 ( 6 x + 1 ) + 3 = 72 x + 20 k = 12(6x+1) + 3 = 72x+20 .

  • Finally, for the fourth case, we have ( 12 a + 11 ) ( 12 a + 12 ) = 72 n + 60 (12a+11)(12a+12) = 72n+60 . As for the first case, we can simplify this to ( 12 a + 11 ) ( a + 1 ) = 6 n + 5 12 a 2 + 23 a + 11 = 6 n + 5 (12a+11)(a+1) = 6n+5 \Rightarrow 12a^2 + 23a + 11= 6n + 5 12 a 2 6 n = 23 a 6 \Rightarrow 12a^2-6n = -23a-6 . So, 6 23 a + 6 6 \mid 23a+6 , from which a = 6 x a = 6x . Substituting, 432 x 2 6 n = 138 x 6 432x^2 - 6n = -138x-6 6 n = 432 x 2 + 138 x + 6 \Rightarrow 6n = 432x^2+138x+6 n = 72 x 2 + 23 x + 1 \Rightarrow n = 72x^2 + 23x + 1 . As a = 6 x a = 6x , we have k = 72 x + 11 k = 72x+11 .

So, we find that all k k that satisfy the modular equation k ( k + 1 ) 60 ( m o d 72 ) k(k+1)\equiv60\pmod{72} belongs to one of the families 72 x + 11 , 72 x + 20 , 72 x + 51 , 72 x + 60 72x+11, 72x+20, 72x+51, 72x+60 for all x Z x \in \mathbb{Z} . Since S 72 S_{72} has these numbers modulo 72, we state that S 72 = { 11 , 20 , 51 , 60 } S_{72} = \{11, 20, 51, 60\} . So, the sum of the elements is 11 + 20 + 51 + 60 = 142 11 + 20 + 51 + 60 = \boxed{142} .

good explanation

anshumani kumar - 7 years, 3 months ago

Or it is easier to solve k (k+1) is 4 mod 8 and 6 mod 9 individually.

Shourya Pandey - 7 years, 3 months ago

Log in to reply

Post your solution this way. I'd like to know!

João Baptista - 7 years, 3 months ago

Log in to reply

I posted a solution using modular arithmetic without any brute forcing.

James Shi - 7 years, 3 months ago

I did all this and missed the k = 11 (mod 72) case.

And then i realized, its much easier to do this: perl -e 'foreach $i (0 .. 1000) { $j=($i*($i+1)) % 72; print "$i\t$j\n"; }' | awk -F$'\t' '{if ($2 == 60) {print $0} }'

:)

Gagandeep Singh - 7 years, 3 months ago

k ( k + 1 ) 60 m o d 72 k(k+1) \equiv 60 \mod72 so k ( k + 1 ) 60 m o d 8 k(k+1) \equiv 60 \mod8 and k ( k + 1 ) 60 m o d 9 k(k+1) \equiv 60 \mod9 . Now for solve k ( k + 1 ) 4 m o d 8 k(k+1) \equiv 4 \mod8 we use that k 0 m o d 8 , k + 1 1 m o d 8 , k \equiv 0 \mod8, k+1 \equiv 1 \mod8, so k ( k + 1 ) 0 m o d 8 k(k+1) \equiv 0 \mod8 k 1 m o d 8 , k + 1 2 m o d 8 , k \equiv 1 \mod8, k+1 \equiv 2 \mod8, so k ( k + 1 ) 2 m o d 8 k(k+1) \equiv 2 \mod8 k 2 m o d 8 , k + 1 3 m o d 8 , k \equiv 2 \mod8, k+1 \equiv 3 \mod8, so k ( k + 1 ) 6 m o d 8 k(k+1) \equiv 6 \mod8 k 3 m o d 8 , k + 1 4 m o d 8 , k \equiv 3 \mod8, k+1 \equiv 4 \mod8, so k ( k + 1 ) 4 m o d 8 k(k+1) \equiv 4 \mod8 k 4 m o d 8 , k + 1 5 m o d 8 , k \equiv 4 \mod8, k+1 \equiv 5 \mod8, so k ( k + 1 ) 4 m o d 8 k(k+1) \equiv 4 \mod8 k 5 m o d 8 , k + 1 6 m o d 8 , k \equiv 5 \mod8, k+1 \equiv 6 \mod8, so k ( k + 1 ) 6 m o d 8 k(k+1) \equiv 6 \mod8 k 6 m o d 8 , k + 1 7 m o d 8 , k \equiv 6 \mod8, k+1 \equiv 7 \mod8, so k ( k + 1 ) 2 m o d 8 k(k+1) \equiv 2 \mod8 k 7 m o d 8 , k + 1 0 m o d 8 , k \equiv 7 \mod8, k+1 \equiv 0 \mod8, so k ( k + 1 ) 0 m o d 8 k(k+1) \equiv 0 \mod8

Conclude that k 3 m o d 8 k \equiv 3 \mod8 or k 4 m o d 8 k \equiv 4 \mod8 . By other hand k 2 + k 6 m o d 9 k^2+k\equiv 6 \mod 9 4 k 2 + 4 k 24 m o d 9 4k^2+4k\equiv 24 \mod 9 ( 2 k + 1 ) 2 = 4 k 2 + 4 k + 1 24 + 1 7 m o d 9 (2k+1)^2=4k^2+4k+1\equiv 24+1\equiv 7 \mod 9 But the residues of 9 that have cuadratic residues equal to 7 are 4 and 5. Now 2 k + 1 4 m o d 9 2k+1\equiv 4 \mod 9 so k 6 m o d 9 k\equiv 6 \mod 9 or 2 k + 1 5 m o d 9 2k+1\equiv 5 \mod 9 so k 2 m o d 9 k\equiv 2 \mod 9 .

By the Chinesse Residue Teorem we have that k 3 m o d 8 k \equiv 3 \mod 8 and k 2 m o d 9 k\equiv 2 \mod9 implies k 11 m o d 72 k \equiv 11 \mod 72 k 3 m o d 8 k \equiv 3 \mod 8 and k 6 m o d 9 k\equiv 6 \mod9 implies k 51 m o d 72 k \equiv 51 \mod 72 k 4 m o d 8 k \equiv 4 \mod 8 and k 2 m o d 9 k\equiv 2 \mod9 implies k 20 m o d 72 k \equiv 20 \mod 72 k 4 m o d 8 k \equiv 4 \mod 8 and k 6 m o d 9 k\equiv 6 \mod9 implies k 60 m o d 72 k \equiv 60 \mod 72

Finally the anwer is 11 + 20 + 51 + 60 = 142 11+20+51+60=142 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...