Two particles of masses and collide elastically in the -plane. Their initial velocities are and , respectively.
After the collision, the kinetic energy of Mass 1 is roughly five times that of Mass 2. Additionally, the -velocity of Mass 1 after the collision is
After the collision, what is the -velocity of Mass 1?
Details and Assumptions:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the x - and y -components of momentum before collision be p x and p y respectively. Then p x = m 1 u 1 x + m 2 u 2 x = 2 ( 3 ) + 3 ( − 7 ) = − 1 5 . Since the collision is elastic, by conservation of momentum, p x after collision is also − 1 5 . Therefore,
m 1 v 1 x + m 2 v 2 x 2 ( − 5 ) + 3 v 2 x ⟹ v 2 x = − 1 5 = − 1 5 = − 3 5
Similarly, by conservation of p y , we have:
m 1 v 1 y + m 2 v 2 y 2 v 1 y + 3 v 2 y ⟹ v 2 y = m 1 u 1 y + m 2 u 2 y = 2 ( 5 ) + 3 ( − 1 ) = 7 = 3 7 − 2 v 1 y . . . ( 1 )
Now, consider the conversion of kinetic energy:
2 1 m 1 v 1 2 + 2 1 m 2 v 2 2 2 m 1 ( v 1 x 2 + v 1 y 2 ) + 2 m 2 ( v 2 x 2 + v 2 y 2 ) ( − 5 ) 3 + v 1 y 2 + 2 3 ( ( − 3 5 ) 2 + v 2 y 2 ) v 1 y 2 + 2 3 v 2 y 2 v 1 y 2 + 2 3 ( 3 7 − 2 v 1 y ) 2 ⟹ 1 0 v 1 y 2 − 2 8 v 1 y − 4 3 0 = 2 1 m 1 u 1 2 + 2 1 m 2 u 2 2 = 2 m 1 ( u 1 x 2 + u 1 y 2 ) + 2 m 2 ( u 2 x 2 + u 2 y 2 ) = 3 2 + 5 2 + 2 3 ( ( − 7 ) 2 + ( − 1 ) 2 ) = 6 4 7 9 = 6 4 7 9 = 0 ( 1 ) : v 2 y = 3 7 − 2 v 1 y
Solving the quadratic equation for v 1 y and checking the respective kinetic energies E 1 and E 2 :
{ v 1 y = 8 . 1 0 5 v 1 y = − 5 . 3 0 5 ⟹ v 2 y = − 3 . 0 7 0 ⟹ v 2 y = 5 . 8 7 0 E 1 = 9 0 . 6 9 5 E 1 = 5 3 . 1 4 5 E 2 = 1 8 . 3 0 5 E 2 = 5 5 . 8 5 4 E 1 : E 2 ≈ 5 : 1 E 1 : E 2 ≈ 1 : 1 Accepted. Rejected.