Constant Distance of Trig Points

Geometry Level 4

The distance between the points ( 3 2 sin ( α c ) , 1 2 sin ( α c ) ) \left(\dfrac{\sqrt{3}}{2}\sin (\alpha-c), \dfrac{1}{2}\sin(\alpha-c)\right) ( 1 2 sin ( α + c ) , 3 2 sin ( α + c ) ) \left(\dfrac{1}{2}\sin (\alpha+c), \dfrac{\sqrt{3}}{2}\sin(\alpha+c)\right)

is constant, for some constant c c and variable α \alpha .

If the distance between the points can be expressed as p q \dfrac{p}{q} for positive coprime integers p , q p,q , then find p + q p+q .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Garg
Aug 25, 2014

Distance between the points is given by

( 3 2 s i n ( α c ) 1 2 s i n ( α + c ) ) 2 + ( 1 2 s i n ( α c ) 3 2 s i n ( α + c ) ) 2 \sqrt { { \left( { \frac { \sqrt { 3 } }{ 2 } sin{ \left( \alpha -c \right) -\frac { 1 }{ 2 } sin{ \left( \alpha +c \right) } } } \right) }^{ 2 }+{ \left( \frac { 1 }{ 2 } sin{ \left( \alpha -c \right) -\frac { \sqrt { 3 } }{ 2 } sin{ \left( \alpha +c \right) } } \right) }^{ 2 } }

By simplifying the expression we get,

( s i n ( α c ) ) 2 + ( s i n ( α + c ) ) 2 3 s i n ( α c ) s i n ( α + c ) \sqrt { { \left( sin{ \left( \alpha -c \right) } \right) }^{ 2 }+{ \left( sin{ \left( \alpha +c \right) } \right) }^{ 2 }-\sqrt { 3 } sin{ \left( \alpha -c \right) sin{ \left( \alpha +c \right) } } }

Again using,

s i n ( α c ) = s i n α c o s c c o s α s i n c sin{ \left( \alpha -c \right) }=sin{ \alpha }cos{ c }-cos{ \alpha sin{ c } }

and

s i n ( α c ) s i n ( α + c ) = ( s i n α ) 2 ( s i n c ) 2 sin{ \left( \alpha -c \right) }sin{ \left( \alpha +c \right) }={ \left( sin{ \alpha } \right) }^{ 2 }{ -\left( sin{ c } \right) }^{ 2 }

putting these two in original equation we get

2 ( ( s i n α ) 2 ( c o s ( c ) ) 2 + ( s i n c ) 2 ( c o s α ) 2 ) 3 ( ( s i n α ) 2 ( s i n c ) 2 ) \sqrt { 2\left( { \left( sin{ \alpha } \right) }^{ 2 }{ \left( cos{ (c) } \right) }^{ 2 }+{ \left( sin{ c } \right) }^{ 2 }{ \left( cos{ \alpha } \right) }^{ 2 } \right) -\sqrt { 3 } \left( { \left( sin{ \alpha } \right) }^{ 2 }-{ \left( sin{ c } \right) }^{ 2 } \right) }

arranging the equation we get

( 2 ( c o s c ) 2 2 ( s i n c ) 2 3 ) ( s i n α ) 2 + 2 ( s i n c ) 2 + 3 ( s i n c ) 2 \sqrt { \left( 2{ \left( cos{ c } \right) }^{ 2 }-2{ \left( sin{ c } \right) }^{ 2 }-\sqrt { 3 } \right) { \left( sin{ \alpha } \right) }^{ 2 }+2{ \left( sin{ c } \right) }^{ 2 }+\sqrt { 3 } { \left( sin{ c } \right) }^{ 2 } }

As the distance is constant,it is independent of variable α \alpha ,so its coefficient = 0

2 ( c o s c ) 2 2 ( s i n c ) 2 3 = 0 2{ \left( cos{ c } \right) }^{ 2 }-2{ \left( sin{ c } \right) }^{ 2 }-\sqrt { 3 } =0

( c o s c ) 2 = 3 4 + 1 2 a n d ( s i n c ) 2 = 1 2 3 4 { \left( cos{ c } \right) }^{ 2 }=\frac { \sqrt { 3 } }{ 4 } +\frac { 1 }{ 2 } \quad and\quad { \left( sin{ c } \right) }^{ 2 }=\frac { 1 }{ 2 } -\frac { \sqrt { 3 } }{ 4 }

Putting these in original equation we get

2 ( 1 2 3 4 ) + 3 ( 1 2 3 4 ) = 1 2 \sqrt { 2\left( \frac { 1 }{ 2 } -\frac { \sqrt { 3 } }{ 4 } \right) +\sqrt { 3 } \left( \frac { 1 }{ 2 } -\frac { \sqrt { 3 } }{ 4 } \right) } =\frac { 1 }{ 2 }

p + q = 1 + 2 = 3 \boxed{p+q=1+2=3}

This can be solved by considering the 2 points to lie on 2 circles.

Since parametric form of points lying on a circle is (asinθ , acosθ ) where a=radius and θ=angle subtended by position vector of point with x axis, Let

                       √3÷2sin(α-c) = asinθ 
               and    1/2sin(α-c) = acosθ.............eqn 1

By comparing, a=√3/2 and θ=(α-c) putting these values in eqn 1,;

                            1/2sin(α-c) = √3/2cos(α-c)
                             tan(α-c) = √3
                             (α-c) = 60 deg

Therefore, point 1 can be written as (√3/2sin60,1/2cos60) which is(3/4,√3/4)

Similarly for point 2

                        1/2sin(α+c)=Asinβ and  
                     √3/2sin(α+c)=Acosβ..............eqn 2

Comparing we get A=1/2 and β=α+c Putting in eqn 2,

                    √3/2sin(α+c)=1/2cos(α+c)
                     tan(α+c)=1/√3
                       (α+c)=30 deg.

Therefore point 2 can be written as (1/2sin30,√3/2sin30) which is(1/4,√3/4) Applying distance formula between points 1 and 2

√((3/4-1/4)²+(0)²)=1/2

p=1 and q=2 therefore p+q=3

Ashrene Roy - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...